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Abstract: A connected graph 𝐺 = (𝑉, 𝐸) is called Hamiltonian if 𝐺 contains a spanning cycle and if a 

graph 𝐺 contains a spanning path between arbitrary pair of its vertices is called Hamilton-connected. A 

bipartite graph is called Hamilton-laceable if there exist Hamiltonian path between vertices of different 

partite sets and a graph 𝐺 is random Hamiltonian-𝑡∗- laceable if there exists a 𝑢 − 𝑣  Hamiltonian path 

for at least one pair 𝑢, 𝑣 ∈ 𝑉(𝐺)  for 𝑡∗ distance. In this paper, we have studied the Hamiltonian laceble 

and random Hamiltonian-𝑡∗- laceable graphs of total transformation graph 𝐺−++ of graphs viz. path 𝑃𝑛, 

cycle 𝐶𝑛, complete bipartite graph 𝐾𝑟,𝑠, n-dimensional convex polytopes 𝐷𝑛, 𝐻𝑛 and 𝐺𝑛.    

Keywords: Hamiltonian graph, Hamiltonian connected, Hamilton-laceable, total transformation graph. 

 

1. Introduction 

Let 𝐺 be a finite, simple, connected and undirected graph. A cycle in a graph 𝐺 is called Hamiltonian if it 

passes through every vertex of 𝐺 exactly once. Likewise, a Hamiltonian path is a path that visits all the 

vertices without repetition. However, not all graphs include Hamiltonian cycles. For example, trees are 

acyclic and therefore cannot contain any Hamiltonian cycles, although they may still possess Hamiltonian 

paths. 

A graph 𝐺 is classified as Hamiltonian if it has at least one Hamiltonian cycle. By nature, both cycle graphs 

and complete graphs (also known as cliques) are Hamiltonian. A graph is said to be traceable if it includes 

at least one Hamiltonian path. While every Hamiltonian graph is necessarily traceable, the reverse is not 

always true. A classic instance of a traceable but non-Hamiltonian graph is the Petersen graph. 

If a graph contains a Hamiltonian path between every pair of distinct vertices, it is referred to as Hamilton-

connected. This notion was introduced by Ore[1] in 1963. Frucht [2] investigated trivalent Hamiltonian 

graphs and their canonical representations. 

Bipartite graphs cannot exhibit Hamilton-connectivity, as a Hamiltonian path cannot exist between two 

vertices in the same partite set. In such cases, if Hamiltonian paths do exist between vertices of opposite 

partite sets, the graph is termed Hamilton-laceable. 

There is a significant amount of research dedicated to the study of Hamiltonicity and Hamilton-connectivity 

in graphs. Chartrand et al. [8] demonstrated that squaring a block graph results in a Hamilton-connected 

graph. Thomassen [9] explored Hamilton-connectivity in tournament graphs. Chang et al. [10] analyzed 

various aspects such as panconnectivity, Hamiltonian fault-tolerance, and Hamilton-connectivity in 

alternating group graphs, treating them as interconnection network models. 
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Kewen et al. [11] identified a sufficient condition for a graph to be Hamilton-connected. Zhou and Wang 

[12] presented Hamilton-connectivity criteria based on factors like edge count, spectral radius, and signless 

Laplacian spectral radius. 

Further contributions by Zhou et al. [13] involved the computation of the Wiener and Harary indices for 

Hamilton-connected graphs with considerable diameter. Wei et al. [14] developed spectral versions of 

Erdős' theorems in the context of Hamilton-connected graphs. Hung et al. [15] delved into Hamilton-

connectivity in alphabet grid graphs. 

Zhou et al. [16] built upon a result by Fiedler and Nikiforov by proposing signless Laplacian spectral criteria 

for Hamilton-connectivity in graphs with a large minimum degree. More recently, Shabbir et al. [17] 

focused on the Hamilton-connectivity properties of Toeplitz graphs. 

A finite connected bipartite graph G is called Hamilton-laceable if for any two vertices 𝑣, 𝑤 ∈ 𝑉(𝐺) from 

different bipartition classes of G there exists a Hamilton-path whose endvertices are 𝑣 and 𝑤. 

 

Laceability in the brick products of even cycles was explored by Alspach et.al. in [22]. A characterization 

for a 1-connected graph to be Hamiltonian-t-laceable for t = 1; 2 and 3 is given in [10] and this was extended 

to t = 4 and 5 by Thimmaraju and Murali [34]. Leena Shenoy [33] studied Hamiltonian laceability properties 

in product graphs involving cycles and paths. More results in the laceability properties of product graphs 

canbefoundin[27],[28],[29],and[30]. 

 

By preserving the vertex-edge incidence relation in convex polytopes, their graphs are constructed. Baca 

[18] was the first researcher to consider these families of geometric graphs. In [19] Baca studied the problem 

of magic (resp. graceful and antigraceful) labeling of convex polytopes, whereas, in [20] the problem of 

face antimagic labeling of convex polytopes was studied. Miller et al. [21] studied the vertex-magic total 

labeling of convex polytopes.  

Definition 1.  A graph 𝐺 = (𝑉, 𝐸) with |𝑉| ≥ 2 , is random Hamiltonian-𝑡∗- laceable if there exists a 𝑢 −
𝑣  Hamiltonian path for at least one pair 𝑢, 𝑣 ∈ 𝑉(𝐺)  for 𝑡∗ distance. 

Definition 2.  For 𝑈 ⊆ 𝑉(𝐺) and 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉(𝐺), if 𝑈 = {𝑢𝑖; 1 ≤ 𝑖 ≤ 𝑝} then 𝑣𝑖 ∘ {𝑢𝑖; 1 ≤ 𝑖 ≤ 𝑝} ∘ 𝑣𝑗 

means that 𝑣𝑖 ∼ 𝑢1 and 𝑢𝑝 ∼ 𝑣𝑗 and adjacency in the rest of 𝑢𝑖
′𝑠 (2 ≤ 𝑖 ≤ 𝑝) stays the same. 

Transformation graphs takes information from the original graph and converts source information into a 

new structure. If it is possible to figure out the given graph from the transformed graph in polynomial time, 

such operation may be used to survey miscellaneous structural properties 

of the original graph considering the transformation graphs. Therefore it fosters to study the research of 

transformation  graphs and their structural properties . 

Definition 3.  Let 𝐺 = (𝑉, 𝐸) be a graph and 𝑥, 𝑦, 𝑧 be three variables taking values + or −. The total 

transformation graph 𝐺𝑥𝑦𝑧 is a graph having  𝑉(𝐺) ∪ 𝐸(𝐺) as a vertex set, and for 𝛼, 𝛽 ∈ 𝑉(𝐺) ∪ 𝐸(𝐺), 

𝛼 and 𝛽 are adjacent in 𝐺𝑥𝑦𝑧 if and only if  

1. 𝛼, 𝛽 ∈ 𝑉(𝐺) , 𝛼, 𝛽 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝐺 𝑖𝑓 𝑥 =  +𝑎𝑛𝑑 𝛼 𝑎𝑛𝑑 𝛽 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝐺 𝑖𝑓 𝑥 = − 
2. 𝛼, 𝛽 ∈ 𝑉(𝐺) , 𝛼, 𝛽 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝐺 𝑖𝑓 𝑦 =  +𝑎𝑛𝑑 𝛼 𝑎𝑛𝑑 𝛽 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝐺 𝑖𝑓 𝑦 = − 

3. 𝛼, 𝛽 ∈ 𝑉(𝐺) , 𝛼, 𝛽 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝐺 𝑖𝑓 𝑧 =  +𝑎𝑛𝑑 𝛼 𝑎𝑛𝑑 𝛽 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝐺 𝑖𝑓 𝑧 = − 

Note 1. Since there are eight distinct 3-permutations of {+, −}, we obtain eight graphical transformations 

of 𝐺. It is interesting to see that 𝐺+++ is exactly the total graph 𝑇(𝐺) of 𝐺 

and 𝐺−−− is the complement of 𝑇(𝐺). Also for a given graph 𝐺, 𝐺++− and 𝐺−−+, 𝐺+−+ and 𝐺−+−, 𝐺−++ 

and 𝐺+−− are the other three pairs of complementary graphs. 

https://doi.org/10.71058/jodac.v9i5004
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Figure 1. A graph 𝐺 and its total transformation graphs. 

2. Hamiltonicity of 𝐺−++ 

Theorem 1[3]. 𝐺−++ is connected for any graph 𝐺. 

Theorem 2[3]. Let 𝐺 be a graph then 𝑑𝑖𝑎𝑚(𝐺−++) ≤ 3 and the equality holds if and only if 

𝑑𝑖𝑎𝑚(𝐿(𝐺)) > 2. 

Theorem 3.  Let 𝐺 be a graph with of order at least three then 𝐺−++ is Hamiltonian. 

Proof. Let 𝐺 = (𝑉, 𝐸) be a graph of order 𝑛 and size 𝑚 where 𝑛 ≥ 3. Clearly, by Theorem A, 𝐺−++ is 

connected. Next, we need to show that 𝐺−++ contains a Hamiltonian path if |𝑉(𝐺)| ≥ 3. On the contrary, 

assume that 𝐺−++ is Hamiltonian and |𝑉(𝐺)| < 3. Then either 𝐺 = 𝐾1, 𝐾2, or 𝐾2, in all these cases, it is 

easy to check that 𝐺−++ is not Hamiltonian. Next assume that |𝑉(𝐺)| ≥ 3 now need to show that 𝐺−++ is 

Hamiltonian. Let 𝑋 be the set of maximum edge-independent set of 𝐺, and let 𝐻 be a graph of order 𝑛 such 

that every pair of vertices are adjacent. Clearly, 𝐺 is a subgraph of 𝐻 with |𝑉(𝐺)| = |𝑉(𝐻)|, and there 

exists a spanning cycle 𝐶 in 𝐻 containing every edge of 𝑋. Suppose 𝑒1, 𝑒2, … , 𝑒𝑛 = 𝑋′ are the edges of 𝐺 

on 𝐶, then clearly 𝑋 ⊆ 𝑋′. Note that if 𝑋′ = 𝐸(𝐺), then it is easy to obtain a spanning cycle of 𝐺−++ by 

removing each edge 𝑢𝑖𝑣𝑗 of 𝐶 by the path 𝑢𝑖𝑒𝑖𝑣𝑗 of length 2 for 𝑖 = 1,2, … , 𝑚. Otherwise, 𝐸(𝐺) ∖ 𝑋′ is 

non-empty, since 𝑋 is the maximum set of independent edges of 𝐺, then 𝐸(𝐺) ∖ 𝑋′ is incident to at least 

some vertex, say 𝑣. To get the spanning cycle for 𝐺−++, we should include all the edges of 𝐺 into 𝐶. By 

replacing every edge of 𝐶 by a path, we get a Hamiltonian cycle for 𝐺−++. This completes the proof. 

Theorem 4. Let 𝐺 = 𝑃𝑛; 𝑛 ≥ 3, then 

𝑃𝑛
−++ {

𝑟𝑎𝑛𝑑𝑜𝑚 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛 2∗ − 𝑙𝑎𝑐𝑒𝑎𝑏𝑙𝑒, if 𝑛 ≤ 3,4;

𝑟𝑎𝑛𝑑𝑜𝑚 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛 3∗ − 𝑙𝑎𝑐𝑒𝑎𝑏𝑙𝑒, 𝑛 ≥ 5.
 

Proof. Let 𝐺 = 𝑃𝑛 be a path with 𝑛 ≥ 3. Let 𝑉(𝑃𝑛) = {𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑣𝑛} and 𝐸(𝑃𝑛) = {𝑒1, 𝑒2, 𝑒3, ⋯ , 𝑒𝑚}. 

Clearly by Theorem 1, 𝑃𝑛
−++ is connected and by Theorem 2, 𝑑𝑖𝑎𝑚(𝑃𝑛

−++) ≤ 3. Also from Theorem 3, 

𝑃𝑛
−++ Hamiltonian. Hence 𝑃𝑛

−++ is either random Hamiltonian 2∗- laceable or random Hamiltonian 3∗- 

laceable. Consider the following cases: 

𝑃3
−++: 𝑣1 ∼ 𝑣3 ∼ 𝑒2 ∼ 𝑒1 ∼ 𝑣2 

https://doi.org/10.71058/jodac.v9i5004
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Hence, 𝑃3
−++ is random Hamiltonian 2∗- laceable. 

 

Let 𝑛 = 4, then 𝐺 = 𝑃4 with 𝑉(𝑃4) = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and 𝐸(𝑃𝑛) = {𝑒1, 𝑒2, 𝑒3}. Then 𝑉(𝑃4
−++) =

{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑒1, 𝑒2, 𝑒3}. Clearly, 𝑑(𝑣1, 𝑣2) = 2. We need to show that 𝑃4
−++ contains 𝑣1 − 𝑣2 

Hamiltonian path. i.e. 

𝑃4
−++: 𝑣1 ∼ 𝑣4 ∼ 𝑒3 ∼ 𝑣3 ∼ 𝑒2 ∼ 𝑒1 ∼ 𝑣2 

Hence, 𝑃4
−++ is random Hamiltonian 2∗- laceable. 

 Pn
{−++}

: e1  ∼  v2  ∼   e2  ∼  v3  ∼  e3  ∼ ⋯  ∼  em−1 ∼  vn−1  ∼  v1  ∼  vn  ∼  e𝑚 

 

Hence, 𝑃𝑛
−++ is random Hamiltonian 3∗- laceable. 

 

 

 
 

Figure 2. A graph 𝐺 and its total transformation graphs. 

Theorem 5. Let 𝐺 = 𝐶𝑛; 𝑛 ≥ 3, then 

𝐶𝑛
−++ {

𝑟𝑎𝑛𝑑𝑜𝑚 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛 2∗ − 𝑙𝑎𝑐𝑒𝑎𝑏𝑙𝑒, if 𝑛 ≤ 3,4,5;

𝑟𝑎𝑛𝑑𝑜𝑚 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛 3∗ − 𝑙𝑎𝑐𝑒𝑎𝑏𝑙𝑒, 𝑛 ≥ 6.
 

Proof. Let 𝐺 = 𝐶𝑛 be a cycle with 𝑛 ≥ 3. Let 𝑉(𝐶𝑛) = {𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑣𝑛} and 𝐸(𝐶𝑛) = {𝑒1, 𝑒2, 𝑒3, ⋯ , 𝑒𝑚}. 

Clearly by Theorem 1, 𝐶𝑛
−++ is connected and by Theorem 2, 𝑑𝑖𝑎𝑚(𝐶𝑛

−++) ≤ 3. Also from Theorem 3, 

𝐶𝑛
−++ Hamiltonian. Hence 𝐶𝑛

−++ is either random Hamiltonian 2∗- laceable or random Hamiltonian 3∗- 

laceable. Consider the following cases: 

 

𝐶3
−++: 𝑣1 ∼ 𝑒3 ∼ 𝑣3 ∼ 𝑒3 ∼ 𝑒1 ∼ 𝑣2 

Hence, 𝐶3
−++ is random Hamiltonian 2∗- laceable. 

𝐶4
−++: 𝑣1 ∼ 𝑒1 ∼ 𝑒4 ∼ 𝑣4 ∼ 𝑒3 ∼ 𝑣3 ∼ 𝑒2 ∼ 𝑣2 

Hence, 𝐶4
−++ is random Hamiltonian 2∗- laceable. 
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𝐶5
−++: 𝑣1 ∼ 𝑒1 ∼ 𝑒5 ∼ 𝑣5 ∼ 𝑒4 ∼ 𝑣4 ∼ 𝑒3 ∼ 𝑣3 ∼ 𝑒2 ∼ 𝑣2 

Hence, 𝐶5
−++ is random Hamiltonian 2∗- laceable. 

Cn
−++ ∶  e1  ∼  v1  ∼  em  ∼  vn  ∼  em−1  ∼  vn−1  ∼  em−2  ∼ vn−2  ∼ ⋯  ∼  v3  ∼  e3  ∼  e2  ∼  v2  

∼  v4  ∼  e4 

Hence, 𝐶𝑛
−++ is random Hamiltonian 3∗- laceable. 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3. A graph 𝐺 and its total transformation graphs. 

Theorem 6. Let 𝐺 = 𝐾𝑟,𝑠; 2 ≤ 𝑟 ≤ 𝑠, then 𝐾𝑟,𝑠
−++ is Hamiltonian connected. 

Proof. Let 𝐺 = 𝐾𝑟,𝑠; 2 ≤ 𝑟 ≤ 𝑠 with 𝑉(𝐾𝑟,𝑠) = {𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑣𝑟, 𝑢1, 𝑢2, ⋯ , 𝑢𝑠}, 𝐸(𝐾𝑟,𝑠) =
{𝑒1, 𝑒2, 𝑒3, ⋯ , 𝑒𝑟𝑠}  and 𝐻 = 𝐾𝑟,𝑠

−++. We prove this result by definition. For this, we have to show that there 

exist Hamiltonian paths between any pair of vertices of 𝐻. Let 𝑃 𝐻(𝑢, 𝑣) be a Hamiltonian path between 

vertices 𝑢 and 𝑣 in 𝐻. Let 𝑉(𝐻) = 𝑉𝑟 ∪ 𝑉𝑠 ∪ 𝐸𝑟𝑠, where Vr  = {v1, v2, v3, ⋯ , vr}, 𝑉𝑠 = {𝑢1, 𝑢2, ⋯ , 𝑢𝑠} and 

Ers  = {e1, e2, e3, ⋯ , ers }. 

The existence of the Hamiltonian path between every pair of vertices of the 𝐻 completes the proof. 

 
 

Figure 4. A graph 𝐺 and its total transformation graphs. 
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Theorem 7.Let 𝐺 = 𝐾1,𝑛−1; 𝑛 ≥ 4, then 𝐾1,𝑛−1
−++  is Hamiltonian connected. 

 

 

 

 

 

 

Figure 5. A graph 𝐺 and its total transformation graphs. 

 

Theorem 8. Let 𝐷𝑛 denote the n-dimensional convex polytope with 𝑛 ≥ 4, then 𝐷𝑛
−++is random 

Hamiltonian 𝑡∗-laceable. 

Proof. The vertex set of 𝐷𝑛 consists of four layers of vertices, i.e., 𝑤𝑝, 𝑥𝑝, 𝑦𝑝, and 𝑧𝑝. That is to say that 

𝑉(𝐷𝑛) = {𝑤𝑝, 𝑥𝑝, 𝑦𝑝, 𝑧𝑝: 1 ≤ 𝑝 ≤ 𝑛}. Accordingly, the edge set of 𝐷𝑛 is as follows: 

𝐸(𝐷𝑛)  = {𝑤𝑝𝑤𝑝+1, 𝑧𝑝𝑧𝑝+1, 𝑤𝑝𝑥𝑝, 𝑥𝑝𝑦𝑝, 𝑥𝑝+1𝑦𝑝, 𝑦𝑝𝑧𝑝: 1 ≤ 𝑝 ≤ 𝑛}. (3) 

The subscripts are to be considered modulo 𝑛. The layer of vertices comprising 𝑤𝑝 is called the inner 

layer, whereas the layer comprising 𝑧𝑝 is called the outer layer of 𝐷𝑛. The vertices 𝑥𝑝 and 𝑦𝑝, 1 ≤ 𝑝 ≤ 𝑛 

form the middle layers. Let 𝐷𝑛
−++ denote the generalized transformation graph of 𝐷𝑛. By the definition, 

The vertex set and the edge set of 𝐷𝑛
−++ is given by: 

𝑉(𝐷𝑛
−++)  = {𝑤𝑝, 𝑥𝑝, 𝑦𝑝, 𝑧𝑝: 1 ≤ 𝑝 ≤ 𝑛} ∪ {𝑤𝑝𝑤𝑝+1, 𝑧𝑝𝑧𝑝+1, 𝑤𝑝𝑥𝑝, 𝑥𝑝𝑦𝑝, 𝑥𝑝+1𝑦𝑝, 𝑦𝑝𝑧𝑝: 1 ≤ 𝑝 ≤ 𝑛} 

and |𝐸(𝐷𝑛
−++)| = |𝐸1| + |𝐸2| + |𝐸3|, where 

𝐸1(𝐷𝑛
−++)  =  {𝑧𝑖𝑧𝑗} ∪ {𝑧𝑖, 𝑦𝑗} ∪ {𝑧𝑖, 𝑥𝑗} ∪ {𝑧𝑖, 𝑤𝑗} ∪ {𝑦𝑖, 𝑦𝑗} ∪ {𝑦𝑖 , 𝑥𝑗} ∪ {𝑦𝑖, 𝑤𝑗}

 ∪  {𝑥𝑖, 𝑥𝑗} ∪ {𝑥𝑖, 𝑤𝑗} ∪ {𝑤𝑖, 𝑤𝑗}
 

where, 𝑧𝑖 ≁ 𝑧𝑗, 𝑧𝑖 ≁ 𝑦𝑗, 𝑧𝑖 ≁ 𝑥𝑗, 𝑧𝑖 ≁ 𝑤𝑗, 𝑦𝑖 ≁ 𝑦𝑗, 𝑦𝑖 ≁ 𝑥𝑗, 𝑦𝑖 ≁ 𝑤𝑗, 𝑥𝑖 ≁ 𝑥𝑗, 𝑥𝑖 ≁ 𝑤𝑗 and 𝑤𝑖 ≁ 𝑤𝑗. 

𝐸2(𝐷𝑛
−++)  =  −|{𝑤𝑝𝑤𝑝+1, 𝑧𝑝𝑧𝑝+1, 𝑤𝑝𝑥𝑝, 𝑥𝑝𝑦𝑝, 𝑥𝑝+1𝑦𝑝, 𝑦𝑝𝑧𝑝: 1 ≤ 𝑝 ≤ 𝑛}|

 +
1

2
( ∑  

|𝑉(𝐷𝑛)|

𝑖=1

 𝑑𝑒𝑔 𝐷𝑛
(𝑣𝑖)2)  

𝐸3(𝐷𝑛)  = 2|{𝑤𝑝𝑤𝑝+1, 𝑧𝑝𝑧𝑝+1, 𝑤𝑝𝑥𝑝, 𝑥𝑝𝑦𝑝, 𝑥𝑝+1𝑦𝑝, 𝑦𝑝𝑧𝑝: 1 ≤ 𝑝 ≤ 𝑛}| 

Now, by Theorem 2, 𝑑𝑖𝑎𝑚(𝐷𝑛
−++) ≤ 3. Hence we need to show that there exists a pair of vertices 

𝑣𝑖, 𝑣𝑗 ∈ 𝐷𝑛
−++ such that 𝑑(𝑣𝑖, 𝑣𝑗) = 3 such that 𝑃𝐻(𝑣𝑖, 𝑣𝑗) exists in 𝐷𝑛

−++. By looking at the structure of 
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𝐷𝑛 it is obvious that the outer layer ⋃  𝑛
𝑖=1 𝑧𝑖 will form a cycle in 𝐷𝑛

−++, therefore, 𝑢 = 𝑧𝑖𝑧𝑗 and 𝑣 = 𝑧𝑘𝑧𝑙 

are the vertices at a maximum distance 3 in 𝐷𝑛
−++. Hence by Proposition 5, the result follows. 

 

 
 

Figure 6. A graph 𝐺 and its total transformation graphs. 

 

Theorem 9. Let 𝐻𝑛 denote the n-dimensional convex polytope with 𝑛 ≥ 5, then 𝐻𝑛
−++is random 

Hamiltonian 𝑡∗- laceable. 

Proof. the vertex set of 𝐻𝑛 consists of four layers of vertices, i.e., 𝑣𝑝, 𝑤𝑝, 𝑥𝑝, 𝑦𝑝, and 𝑧𝑝. That is to say 

that 𝑉(𝐻𝑛) = {𝑣𝑝, 𝑤𝑝, 𝑥𝑝, 𝑦𝑝, 𝑧𝑝: 1 ≤ 𝑝 ≤ 𝑛}. Accordingly, the edge set of 𝐻𝑛 is as follows: 

𝐸(𝐻𝑛) ={𝑣𝑝𝑣𝑝+1, 𝑣𝑝𝑤𝑝, 𝑤𝑝𝑣𝑝+1, 𝑤𝑝𝑤𝑝+1, 𝑤𝑝𝑥𝑝, 𝑥𝑝𝑥𝑝+1 

The subscripts are to be considered modulo 𝑛. See Figure 2 to view the 𝑛-dimensional convex polytope 

graph 𝐻𝑛. Let 𝐻𝑛
−++ denote the generalized transformation graph of 𝐻𝑛. By the definition, The vertex set 

and the edge set of 𝐻𝑛
−++ is given by: 

𝑉(𝐻𝑛
−++)  = {𝑣𝑝, 𝑤𝑝, 𝑥𝑝, 𝑦𝑝, 𝑧𝑝: 1 ≤ 𝑝 ≤ 𝜈} ∪ {𝑣𝑝𝑣𝑝+1, 𝑣𝑝𝑤𝑝, 𝑤𝑝𝑣𝑝+1, 𝑤𝑝𝑤𝑝+1, 𝑤𝑝𝑥𝑝, 𝑥𝑝𝑥𝑝+1}

{𝑥𝑝𝑦𝑝, 𝑦𝑝𝑥𝑝+1, 𝑦𝑝𝑦𝑝+1, 𝑦𝑝𝑧𝑝, 𝑧𝑝𝑧𝑝+1: 1 ≤ 𝑝 ≤ 𝑛}
 

and |𝐸(𝐻𝑛
−++)| = |𝐸1| + |𝐸2| + |𝐸3|, where 

𝐸1(𝐻𝑛
−++)  =  {𝑧𝑖𝑧𝑗} ∪ {𝑧𝑖𝑦𝑗} ∪ {𝑧𝑖𝑥𝑗} ∪ {𝑧𝑖𝑤𝑗} ∪ {𝑧𝑖𝑣𝑗}

 ∪  {𝑦𝑖𝑦𝑗} ∪ {𝑦𝑖𝑥𝑗} ∪ {𝑦𝑖𝑤𝑗} ∪ {𝑦𝑖𝑣𝑗}

 ∪  {𝑥𝑖𝑥𝑗} ∪ {𝑥𝑖𝑤𝑗} ∪ {𝑥𝑖𝑣𝑗}

 ∪  {𝑤𝑖𝑤𝑗} ∪ {𝑤𝑖𝑣𝑗} ∪ {𝑣𝑖𝑣𝑗}

 

where, 𝑧𝑖 ≁ 𝑧𝑗, 𝑧𝑖 ≁ 𝑦𝑗, 𝑧𝑖 ≁ 𝑥𝑗, 𝑧𝑖 ≁ 𝑤𝑗, 𝑧𝑖 ≁ 𝑣𝑗, 𝑦𝑖 ≁ 𝑦𝑗, 𝑦𝑖 ≁ 𝑥𝑗, 𝑦𝑖 ≁ 𝑤𝑗, 𝑦𝑖 ≁ 𝑣𝑗, 𝑥𝑖 ≁ 𝑥𝑗, 𝑥𝑖 ≁ 𝑤𝑗, 

𝑥𝑖 ≁ 𝑣𝑗, 𝑤𝑖 ≁ 𝑤𝑗, 𝑤𝑖 ≁ 𝑣𝑗 and 𝑣𝑖 ≁ 𝑣𝑗. 

𝐸2(𝐻𝑛
−++)  =  −|𝐸(𝐻𝑛)| +

1

2
( ∑  

|𝑉(𝐻𝑛)|

𝑖=1

 𝑑𝑒𝑔 𝐻𝑛
(𝑣𝑖)2) 

𝐸3(𝐻𝑛)  = 2|𝐸(𝐻𝑛)| 
Now, by Theorem 2, 𝑑𝑖𝑎𝑚(𝐻𝑛

−++) ≤ 3. Hence we need to show that there exists a pair of vertices 

𝑣𝑖, 𝑣𝑗 ∈ 𝐻𝑛
−++ such that 𝑑(𝑣𝑖, 𝑣𝑗) = 3 such that 𝑃𝐻(𝑣𝑖, 𝑣𝑗) exists in 𝐻𝑛

−++. By looking at the structure of 
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𝐻𝑛 it is obvious that the outer layer ⋃  𝑛
𝑖=1 𝑧𝑖 will form a cycle in 𝐻𝑛

−++, therefore, 𝑢 = 𝑧𝑖𝑧𝑗 and 𝑣 = 𝑧𝑘𝑧𝑙 

are the vertices at a maximum distance 3 in 𝐻𝑛
−++. Hence by Proposition 5, the result follows. 

 

 

 

Figure 7. A graph 𝐺 and its total transformation graphs. 

 

Theorem 10. Let 𝐺𝑛 denote the n-dimensional convex polytope with 𝑛 ≥ 5, then 𝐺𝑛
−++is random 

Hamiltonian 𝑡∗- laceable. 

Proof. The vertex set of 𝐺𝑛 consists of four layers of vertices, i.e., 𝑤𝑝, 𝑥𝑝, 𝑦𝑝, and 𝑧𝑝. That is to say that 

𝑉(𝐺𝑛) = {𝑤𝑝, 𝑥𝑝, 𝑦𝑝, 𝑧𝑝: 1 ≤ 𝑝 ≤ 𝑛}. Accordingly, the edge set of 𝐺𝑛 is as follows: 

𝐸(𝐺𝑛) ={𝑤𝑝𝑤𝑝+1, 𝑥𝑝𝑥𝑝+1, 𝑦𝑝𝑦𝑝+1, 𝑧𝑝𝑧𝑝+1, 𝑤𝑝𝑥𝑝, 𝑥𝑝𝑦𝑝, 

The subscripts are to be considered modulo 𝑣. Figure 3 presents the 𝑛-dimensional convex polytope 𝐺𝑛 

with proper labeling of vertices which will be used to show its Hamilton connectivity. Let 𝐺𝑛
−++ denote 

the generalized transformation graph of 𝐺𝑛. By the definition, The vertex set and the edge set of 𝐺𝑛
−++ is 

given by: 

𝑉(𝐺𝑛
−++)  = {𝑤𝑝, 𝑥𝑝, 𝑦𝑝, 𝑧𝑝: 1 ≤ 𝑝 ≤ 𝑛} ∪ {𝑤𝑝𝑤𝑝+1, 𝑥𝑝𝑥𝑝+1, 𝑦𝑝𝑦𝑝+1, 𝑧𝑝𝑧𝑝+1, 𝑤𝑝𝑥𝑝, 𝑥𝑝𝑦𝑝, }.

{. 𝑦𝑝𝑥𝑝+1, 𝑦𝑝𝑧𝑝: 1 ≤ 𝑝 ≤ 𝑛 − 1}
 

and |𝐸(𝐺𝑛
−++)| = |𝐸1| + |𝐸2| + |𝐸3|, where 

𝐸1(𝐺𝑛
−++)  =  {𝑧𝑖𝑧𝑗} ∪ {𝑧𝑖, 𝑦𝑗} ∪ {𝑧𝑖, 𝑥𝑗} ∪ {𝑧𝑖 , 𝑤𝑗} ∪ {𝑦𝑖 , 𝑦𝑗} ∪ {𝑦𝑖, 𝑥𝑗} ∪ {𝑦𝑖 , 𝑤𝑗}

 ∪  {𝑥𝑖, 𝑥𝑗} ∪ {𝑥𝑖, 𝑤𝑗} ∪ {𝑤𝑖, 𝑤𝑗}
 

where, 𝑧𝑖 ≁ 𝑧𝑗, 𝑧𝑖 ≁ 𝑦𝑗, 𝑧𝑖 ≁ 𝑥𝑗, 𝑧𝑖 ≁ 𝑤𝑗, 𝑦𝑖 ≁ 𝑦𝑗, 𝑦𝑖 ≁ 𝑥𝑗, 𝑦𝑖 ≁ 𝑤𝑗, 𝑥𝑖 ≁ 𝑥𝑗, 𝑥𝑖 ≁ 𝑤𝑗 and 𝑤𝑖 ≁ 𝑤𝑗. 

𝐸2(𝐺𝑛
−++)  =  −|𝐸(𝐺𝑛)| +

1

2
( ∑  

|𝑉(𝐺𝑛)|

𝑖=1

 𝑑𝑒𝑔 𝐺𝑛
(𝑣𝑖)2) 

𝐸3(𝐺𝑛)  = 2|𝐸(𝐺𝑛)|. 

Now, by Theorem 2, 𝑑𝑖𝑎𝑚(𝐺𝑛
−++) ≤ 3. Hence we need to show that there exists a pair of vertices 

𝑣𝑖, 𝑣𝑗 ∈ 𝐺𝑛
−++ such that 𝑑(𝑣𝑖, 𝑣𝑗) = 3 such that 𝑃𝐻(𝑣𝑖, 𝑣𝑗) exists in 𝐺𝑛

−++. By looking at the structure of 
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𝐺𝑛 it is obvious that the outer layer ⋃  𝑛
𝑖=1 𝑧𝑖 will form a cycle in 𝐺𝑛

−++, therefore, 𝑢 = 𝑧𝑖𝑧𝑗 and 𝑣 = 𝑧𝑘𝑧𝑙 

are the vertices at a maximum distance 3 in 𝐺𝑛
−++. Hence by Proposition 5, the result follows. 

 

 
 

Figure 8. A graph 𝐺 and its total transformation graphs. 
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