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Abstract: Precise identification and classification of diseased tissue and its adjacent healthy structures are 

vital in the diagnosis of conditions like lung cancer. Achieving a more accurate diagnosis necessitates a 

substantial amount of data. Yet, physicians often encounter challenges in manually analyzing extensive and 

intricate CT scan images to extract essential information. While UNet-based architectures have demonstrated 

superior performance in image segmentation compared to other deep learning architectures, challenges arise 

in segmentation accuracy due to the low resolution of medical images and insufficient data. In this research, 

we propose a novel architectural design that addresses these issues by integrating four parallel UNETs 

through an attention residual network. To enhance performance, this architecture focuses on slicing the single 

image as four quadrant images and processing them individually rather than the entire image as a whole. This 

approach allows our model to capture intricate features of the images, as each image slice undergoes 

independent convolution and deconvolution through four parallel UNets. Ultimately, adhering to the attention 

residual network architecture, the UNet outputs are merged in a manner that amplifies the features of the 

image associated with the output through a skip connection. The suggested architecture demonstrated superior 

performance in terms of Dice score, achieving 91% on LIDI-IRDC, 89% on LUNA16, and 89% on Kaggle, 

compared to using a conventional U-Net or other U-Net variants. 

 

Keywords: Deep learning, Parallel U-Nets, Residual blocks, Attention Units 

 

1. Introduction: 

 

        Lungs are an important organ present in the human chest that transports oxygen throughout the 

body and eliminates carbon dioxide. In the real –world, detecting tumors in lungs from a huge number 

of CT images is a completely manual process that relies on the time and knowledge of medical 

professionals. The treatment of the disease also demands a considerable amount of time and relies 

heavily on the expertise of specialists 

 Lung cancer stands as the most perilous form of cancer, claiming lives globally. Countries 

categorized as middle and lower-income contribute to 50% of annual fatalities. In the United States, 

lung cancer ranks as the primary cause of cancer-related deaths for both men and women [1].The 

mortality rate reported by the National Center for Health Statistics reveals that in 2022, the United 

States documented 609,360 cancer cases. Among these, approximately 350 deaths per day were 

attributed to lung cancer, emerging as the foremost cause of cancer-related fatalities [2]. 
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Various methods are employed to identify lung cancer, such as X-rays, blood tests, biopsies, 

and CT scans. Due to the diverse characteristics of pulmonary nodules, including variations in size, 

shape, location, and density, their identification can be challenging. The implementation of a 

computer-aided diagnostic (CAD) system proves beneficial in patient care, delivering rapid, accurate, 

and effective diagnoses. Diverse segmentation techniques are utilized by researchers to detect lung 

cancer nodules. CAD systems incorporating deep learning technologies can reduce the dependency 

on medical specialists for the identification and classification of lung cancer nodules, especially in 

tasks like segmentation, detection, and classification. 

The U-Net architecture [3] consists of the encoder path and decoder path. The input of the 

encoder is down-sampled by a series of max pooling and convolution procedures. Final feature maps 

that have been down-sampled are sent to the decoder path, where they are up-sampled using a similar 

kind of convolution and max pooling procedure. Thus Noisy U-Net architecture has demonstrated 

superior performance in lung cancer segmentation [4], proving to be significantly faster than 

conventional methods. 

Furthermore, the model is prone to losing information in specific areas of the image when the 

architecture uses the entire image as input. However, when dealing with a relatively large input image 

size, training the model demands a higher GPU memory capacity. The spatial information lost during 

downsampling is recovered by using lengthy skip connections to skip features from the contracting 

path to the expanding path [6].  

To overcome the aforementioned problems, instead of training the U-Net with an single 

image, the U-Net model receives the slices of a medical image that have been divided into non-

overlapping patches and their corresponding patches of ground truth[5].Any particular detail in the 

microscope images can be automatically segmented and measured using parallel U-Net[13]. In our 

proposed Enhanced Attention Residual Parallel U-Nets (EARPU-Net) residual networks are added 

to restore features that were lost during downsampling. These types of patch-wise image training can 

concentrate more on local information inside a patch and yield better localization results. Figure 1 

shows the 4 quadrant image slices taken from the original lung image. 

 

 
Fig.1. Lung cancer CT image and its slices 
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To summarize, the main contributions in this paper are as follows: 

● We present an innovative architecture named Attention Residual Parallel U-Nets, which 

incorporates novel connections among parallel U-Nets through convolution networks. This design 

effectively addresses the semantic gap issue between encoder and decoder features by leveraging 

Attention and residual blocks. 

● Our findings demonstrate that scaling the Enhanced Attention Residual Parallel U-Nets (EARPU) 

architecture enhances its performance, surpassing baseline U-Nets with constrained learnable 

parameters. 

● Through comprehensive experiments, we showcase the proposed model's capability to adeptly 

learn intricate details of malignant lung features across a range of medical images sourced from 

diverse modalities. 

The sessions are structured as follows: Section 2 provides a review of pertinent areas for 

additional investigation. In Section 3, we delineate the proposed work and introduce a depthwise 

encoder-decoder Attention Residual parallel U-Net architecture for binary biomedical image 

segmentation. Section 4 presents experimental results showcasing the competitive performance of 

our approach across five standard metrics. Concluding our findings, Section 5 highlights future 

directions for further research. 

 

2. Related Work 

 In the examination of medical images U-Net is a crucial method that shows promising results 

for segmenting images. With limited training data, it can accurately segment images. U-Net variants 

[7] are widely employed in all main imaging modalities, including microscopes, X-rays, and CT and 

MRI scans. 

 

The U-Net acts as the foundational model for segmentation, while the bi-directional 

convolutional long short-term memory (Bi-ConvLSTM) is selected for the extraction and fusion of 

inter-slice features. Two sequence segmentation strategies [8] can employ both inter-slice and intra-

slice features concurrently, enhancing the overall segmentation outcome. Within the UNet++[9] 

architecture, the encoder and decoder sub-networks are linked by a series of nested, dense skip 

pathways. These re-imagined skip pathways are designed to minimize the semantic gap between the 

feature maps of the encoder and decoder pathways. 

 

An attention-UNet [10] in the U-Net variations removes aspects that are unnecessary for the 

current task. The segmentation performance is greatly enhanced by repeatedly applying the attention 

gate after every layer, all without adding additional complexity to the model. Res U-Net [10] also 

comes in another version that tackles the issue of feature identity loss in deeper neural networks due 

to decreasing gradients in the weight vector. By using skip connections, which take the feature map 

from one layer and apply it to another layer deeper in the network, ResNet mitigates this issue. This 

tendency enables the network to perform better for deeper neural networks and better retain feature 

mappings in deeper neural networks. 
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Prior to combining the encoder and decoder features in Sharp U-Net[11], a depth wise 

convolution of the encoder feature map with a sharpening kernel filter is used, creating a sharpened 

intermediate feature map, instead of  applying a simple skip connection. Dogan et.al [12] study delves 

into qualitative and quantitative assessments by employing the Mask R-CNN model to localize 

affected rough regions. Subsequently, segmentation is performed by refining the identified regions 

using the 3D U-Net. 

Compared to single U-Net, parallel U-Net [13] combined with residual blocks produces 

promising results in locating the objects from images. Enhanced transformer-based structures 

integrated into CNN-based blocks to enhance feature extraction capabilities. Specifically designed 

for medical image segmentation [14], this network architecture incorporates the efficient P-

Transformer and a fusion module. The P-Transformer extracts long-range dependencies related to 

distance, while the fusion module captures local information. The resulting fused features contribute 

to the U-shaped structure known as P-TransUNet. This model performs parallel weight extraction 

using convolution and transformer techniques, thereby enhancing features. Attention Residual U-

Nets use attention blocks to separate the parts that need immediate treatment and also efficiently 

identify minimally impacted areas [18].Our proposed model focuses on the parallel connection of 

Attention Residual U-Nets for image slices to achieve effective segmentation. 

 

3. Methodology 

The Enhanced Attention Residual Parallel U-Nets (EARPU) architecture used for lung cancer 

segmentation is based on the standard U-Net architecture. The segmentation algorithm proposed 

consists of three processing stages: image preprocessing, image segmentation using the EARPU-Net 

model, and image post processing. A crucial step in the preprocessing stage involves extracting the 

region of interest (ROI), which helps eliminate the influence of surrounding organs on the lungs. The 

second stage of preprocessing is normalizing the input images to achieve a zero mean and a variance 

of 1. To address the shortage of training images, data augmentation is employed to augment the 

original dataset. The neighboring four slices of the original image, simultaneously inputted into the 

parallel U-Net, undergo artificial enhancement for increased training data variety through techniques 

such as random cropping, elastic deformations, and rotations. 

3.1 Preprocessing 

 Due to memory constraints, computed tomographic (CT) images are scaled to 512 × 512 in 

order to decrease the size of the CT slices. In addition, before the images were fed into the model for 

training, they were normalized to reduce low contrast problems. Affected areas have to get more 

attention when training the neural network with sparse training data. Since augmentations alter CT 

scans, they may be utilized to reduce overfitting across different images from the existing image 

collection. When the dataset available is limited, data augmentation is also used to generate more 

data patches. Increased diversity in training data guarantees generalization of the model. 

doi:%20https://doi.org/10.71058/jodac.v9i3007
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Fig. 2: Illustration of proposed Enhanced Attention Residual Parallel U-Nets(EARPU)  

 

3.2 Lung image Segmentation 

 We evaluated our proposed model using the open dataset such as LIDC-IRDC dataset [15],  

Kaggle [17] dataset  and LUNA16[16]   for training and testing. The dimensions of each CT scan and 

its segmented 2D image is 572 x 572.  We only chose slices ranging from 0 to 256 for slice 1, 256 to 

572 for slice 2 in a horizontal orientation, and slices ranging from 0 to 256 for slice 3, 256 to 572 for 

slice 4 in a vertical orientation. We downsized every image to 256 × 256 because the sizes of these 

2D slices varied across different dimensions and planes. As shown in Fig.2 The first slice represented 

the ‘Quadrant Slice 1’ slice, the second slice represented the ‘Quadrant Slice 2’ slice, , the third slice 

represented the ‘Quadrant Slice 3' slice, and finally the fourth slice represented the  'Quadrant Slice 

4' slice. 

 The proposed EARP- UNet consists of four typical Attention residual U-Net that was similar 

to each other. All four input image slices are forwarded to Attention Residual U-Net 1, 2, 3, and 4 in 

a parallel manner. The resulting image slices are combined using a convolutional layer, which with 

residual blocks produces the segmented result. Image slice segmentation processes the image slice 

content in a detailed manner and also produces a faster response compared to a single U-Net. Residual 

blocks added to each U-Net resolve the vanishing gradient problem. Training in parallel U-Net uses 

F-fold cross-validation for improving the performance. Attention blocks of each U-Net promise 

segmenting the relevant and promising portions of the lungs using attention gates. Figure 3 depicts 

the single-attention residual U-Net of the parallel framework. 

 
Fig. 3: Illustration of Single Attention Residual U-Net 
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The individual Attention Residual U-Net architectural design comprised a downsampling 

path and an upsampling path, with both the encoder and decoder adopting fully convolutional 

network architecture. During downsampling, a 3 × 3 convolution was applied twice, followed by a 2 

× 2 max pooling operation that doubled the number of feature channels. On the other hand, the 

upsampling path involved a 2 × 2 up-convolution, leading to a halving of the feature channel count. 

This was followed by concatenation with the corresponding downsampling path feature map, and 

subsequently, two 3 × 3 convolutions were performed. Subsequently, the feature maps from all the 

distinct U-Net paths were integrated through a residual network, resulting in a unified and single 

segmented output. 

 The integration of EARPU-Net features through a residual network involves concatenating 

the feature maps from each U-Net, as illustrated in Fig.4. The resulting output from the stacked layers 

is then added to the feature maps of the central slices X2 and X3. Notably, the skip connection is 

exclusively employed for the feature maps of X2 and X3. The rationale behind this choice is based 

on the hypothesis that utilizing the skip connection solely for the central slices feature maps will 

effectively preserve and enhance relevant information, preventing the model from learning 

unnecessary features from the other slices. 

H(x’) = F(x’) + (X2 + X3)       (1) 

Equation (1) summarizes the summation of center slices weighted output as residual input to F(x’)that 

produces the output. Figure 4 shows the residual learning in EARPU-Nets. 

doi:%20https://doi.org/10.71058/jodac.v9i3007
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Fig. 4: The proposed building block of residual learning for four attention residual parallel 

U_Nets. X1, X2, X3, and X4 denote output features from the ARUNet_1, ARUNet_2, 

ARUNet_3, and ARUNet_4, respectively. 

The resultant images features are added with central slice X2, X3 values to generate the output 

image. This type of fusion enables the EARPU-Nets to avoid the significant data losses occurring in 

training the models. Residual blocks helps in regenerating the important feature details existing in 

central slices X2,X3.Instead of depending on single central slice, two slices X2,X3 can elaborate the 

details of significant portions. The rectified linear unit (ReLU) was employed as the activation 

function for the input and hidden layers, while the sigmoid function was utilized for the output layer. 

3.3 Post Processing 

 Convoluted image patches are post-processed for detailed review of clinical validation and 

integration. In order to recognize the infected regions after segmentation, more visual-contrasting 

techniques are applied. These kinds of segmentations improve volumetric analysis and quantify the 

affected regions. At different levels of training in terms of epochs, the resultant images are registered 

for further comparative study. Integrating segmented images helps medical experts detect 

abnormalities or initiate the diagnosis process. 

4. Experiments and Results 

doi:%20https://doi.org/10.71058/jodac.v9i3007
doi:%20https://doi.org/10.71058/jodac.v9i3007


 

 

DOI: https://doi.org/10.71058/jodac.v9i3007 

 

VOLUME 9 ISSUE 3 2025 PAGE NO: 100 

Experiments run under Windows 7 Operating Systems with Google Colab. The LIDC-

IDRI[15],LUNA16[16], Kaggle[17] dataset is utilized to train the suggested EARP model. The 

EARP U-Net models were created utilizing Python, an open-source programming language, 

Tensorflow 2.1 and GPU-supporting Keras API. 

4.1 Data sets 

We demonstrate and analyze the performance of the proposed image segmentation model on 

three datasets such as LIDC_IDRI [15], LUNA16 [16] and Kaggle [17]. Images collected from listed 

data sources used for training and testing the EARPU-Net model. The images feeded to individual 

U-Net model is 572X572.CT images collected from the LUNA16 [16] and Kaggle[17] are resized as 

572X572 for training and testing purpose. Table 1 illustrates the medical images and their respective 

data sources utilized in these experiments. 

 

          Table 1:  Medical Images used in the experiments 

Input Dimension Data Source 

256 x 256 Kaggle Dataset[17] 

512 x 512 LIDC-IDRI dataset[15] 

256 x 256 Luna16 dataset[16] 

 

4.2 Loss function 

In training neural networks we want to reduce the loss function. The cross-entropy loss 

function is applied to both the encoder and decoder networks. Optimization is carried out using the 

adaptive moment estimation (Adam) optimizer throughout 120 epochs, with an initial learning rate 

set to 0.005 and a batch size of 8. To mitigate the risk of network overfitting, dropout is incorporated 

into the network layer. The cross-entropy function calculates how our proposed EARPU-Net model 

is defining the difference between the predicted probability and the ground truth value. In minimizing 

loss values, the model learns to assign higher probabilities for correctly classified samples and lower 

probabilities for incorrect samples. This type of minimization of cross-entropy loss values drastically 

improves the accuracy of the model. The following Equation (2) depicts the cross entropy loss used 

for our proposed EARPU-Net where Pi depicts true probability distribution and log Pi depicts the 

predicted probability distribution respectfully. 

 

 L = −1/(|P|)∑€yilog(σ)                                                                               (𝟐) 

4.3 Performance metrics 

We applied the Jaccard Index (JI) and the Dice Similarity Coefficient (DSC), Accuracy and 

Sensitivity for the performance evaluation. The Jaccard Index (JI) is calculated by dividing the union 

area of the anticipated and ground-truth images by the overlapping area between them.  

The mathematical formulation of these scores is described by the equations (3) to (6).  

   Dice Score =
2.𝑇𝑃

 2.𝑇𝑃+𝐹𝑃+𝐹𝑁
       (3)  
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  Jaccard Score =  
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
       (4) 

     Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
       (5)            

 Sensitivity  =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                (6) 

Another metric is the DSC, which is the ratio of the total number of pixels to two times the 

overlapping area of the anticipated and ground truth images. Accuracy is the ratio between the 

numbers of correct predictions with total number of predictions. Sensitivity refers to the accurate 

identification of positive samples among all the actual positive samples. This performance metric is 

calculated by taking the ratio of true positives to the sum of true positives and false negatives. 

 

4.4 Results and Discussion 

Comparison of various U-Net models for lung tumor segmentation using Dice Score, 

Accuracy, Sensitivity and Jaccard Score is displayed in Table 2.From Table 2, it is seen that the 

accuracy for the LIDC-IDRI dataset is higher than other models. The proposed Enhanced Attention 

Residual Parallel U-Net (EARPU-Net) improves Dice Score, Jaccard Score and Sensitivity when 

compared to simple U-Net, Attention U-Net, Attention Res_U-NetGD architectures. 

It is observed from the results that the accuracy dramatically improves as the images are sliced 

as image patches. Enhanced Attention Residual Parallel U-Net (EARPU-Net) model requires fewer 

parameters and produces better results for Kaggle and LUNA16 dataset, comparing to non parallel 

models. Specifically, the developed EARPU-Net model achieves Dice Similarity Coefficient (DSC), 

Accuracy (ACC), Jaccard Similarity Coefficient (Jaccard SC), and Sensitivity (SEN) scores of 90%, 

92%, 91.5%, and 92.8%, respectively. Notably, it demonstrates improvements of 1%, 0.5%, 0.5%, 

and 0.8% in DSC, ACC, SEN, and Jaccard SC scores, respectively, compared to the MARU-Net for 

the LIDC-IDRI dataset. 

Table 2: Comparison of lung cancer segmentation performance of various U-Net 

models in CT images of LIDC-IDRI, Kaggle and LUNA 16 dataset  
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Dataset Models Dice 

Score (%) 

Jaccard 

Score (%) 

Accuracy (%) Sensitivity (%) 

LIDC-

IDRI[15] 

U-Net[3] 81.5 89 88 87 

AU-Net[10] 86.8 91 89 88 

ARes-UNet[18] 87.5 91.5 89.6 90 

Proposed 

EARPU-Net 

91 92 92.5 91.5 

 

LUNA 

16[16] 

UNet[3] 82 85 87 85.7 

AUNet[10] 86 88 88.5 88 

ARes-UNet[18] 87.2 90.5 89 90 

Proposed 

EARPU-Net 89 91.5 91 90.7 

      

Kaggle[17] 

UNet[3] 81 85 86 86.5 

AUNet[10] 86 89 88.8 88 

ARes-UNet[18] 87.5 90 90.5 91 

Proposed 

EARPU-Net 89 91 92 92 

 

The proposed Enhanced Attention Residual Parallel U-Net (EARPU-Net) model 

demonstrates substantial performance on the LUNA16 dataset, achieving Dice Similarity Coefficient 

(DSC), Accuracy (ACC), Jaccard Similarity Coefficient (Jaccard SC), and Sensitivity (SEN) scores 

of 89%, 91.5%, 91%, and 92.4%, respectively. This represents an improvement of 1.3%, 0.5%, 0.3%, 

and 0.9% in DSC, ACC, SEN, and Jaccard SC scores compared to the MARU-Net. Additionally, for 

the Kaggle dataset, the proposed model exhibits improvements of 0.8%, 0.57%, 0.7%, and 0.57% in 

DSC, ACC, SEN, and Jaccard SC scores relative to the MARU-Net. The details presented in Table 

2 and above underscore the robustness of our suggested method in comparison to non-parallel U-Net 

models. 

The Enhanced Attention Residual Parallel U-Net (EARPU-Net) proves effective in achieving 

accurate lung nodule segmentation. The results of the segmentation are presented in Fig.5, with 

column (A) displaying the original representation of the lungs. Column (B) illustrates the 

segmentation using U-Net, column (C) showcases lung nodule segmentation by Attention U-Net, and 

column (D) presents the predicted outcomes by the Enhanced Attention Residual Parallel U-Net 

(EARPU-Net). 

                        Original Image / U-Net [3]   /  AU-Net [10] /ARes-UNet [18] /ARPU-Net 

doi:%20https://doi.org/10.71058/jodac.v9i3007
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Fig. 5.  Predictions generated by our proposed EARP model and state-of-the-art models from test 

data; (column -wise) 1. Original Image 2.UNet 3.AUnet 4.ARU-Net 5.EAPU-Net 

 

Following the completion of the preprocessing steps for lung images, the original images 

are partitioned into four equal slices, and these slices are utilized in the training and validation 

processes. Images of diverse sizes, including small and irregularly shaped ones, are utilized for both 

training and testing. As indicated in Table 2, the recommended EARPU-Net model demonstrates 

outstanding overall performance. This proposed model adeptly segments image slices with 

meticulous detail and integrates the segmented outcomes through convolutional processes. The 

results, as depicted in the showcased images, are highly promising. In the context of computer-aided 

detection (CAD) systems, the imperative task involves detecting nodules and subsequently 

segmenting all identified nodules.  

Using the LIDC-IRDI dataset, the proposed Enhanced Attention residual Parallel U-Net 

(EARPU-Net) had the highest training and validation accuracy of 91.5%, and 91%, respectively 

among the five segmentation models tested. The details of comparison of various model accuracy is 

depicted in Figure 6.Furthermore, to predict the accuracy of the binary segmented masks, Figure 7 

displays the training accuracy and validation accuracy using the LUNA16 dataset.  

The proposed Enhanced Attention Residual Parallel U-Net (EARPU-Net) achieves the 

highest training and validation accuracy of 90% and 91%, respectively, when evaluated on the 

LUNA16 dataset test set, surpassing the performance of the other five tested segmentation models. 

Moreover, the proposed Enhanced Attention Residual Parallel U-Net (EARPU-Net) model achieved 
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the training accuracy and validation accuracy on the Kaggle derived dataset are 91 %, and 90.8%, 

respectively shown in Figure 8.  

The results of our experiment, presented in Table 2, affirm that the EARP-U-Net model 

outperforms all other referenced models in performance metrics, including Dice Similarity 

Coefficient, Jaccard Index Score, Sensitivity, and Specificity. By considering both the tabulated 

results and the visual representation in Figure 5, it is evident that our proposed EARPU-Net  model 

demonstrates superior performance.  

 

 

 

 

 

 

 

 

(a) 
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                                                (b)

 
Fig.6. (a) Training Accuracy and (b) Validation Accuracy for Samples of the LIDC-IDRI[15] 

Dataset 

   (a)  
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                                                              (b)

 
Fig. 6. (a) Training Accuracy and (b) Validation Accuracy for samples of LUNA16[16] Dataset. 

(a) 

 

  
 

 

(b) 
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Fig. 7. (a) Training Accuracy and (b) Validation Accuracy for samples of Kaggle[17] Dataset. 

5. Conclusion 

 

In this study, we proposed the Enhanced Attention Residual Parallel U-Net (EARPU-Net) 

that is based on the U-shaped encoder-decoder structure for lung nodule segmentation. Our EARPU-

Net generates global and local features of images in parallel mode on the edge of the lesion area to 

improve the segmentation performance. In our study we used cross entropy loss function in the 

training to guide the model to focus on the area of the interest so that the EARPU-Net model can 

discriminate details between affected region and non affected regions. Experiments on three datasets 

for multiple lung image segmentation tasks demonstrated that our EARPU-Net outperformed 

conventional U-Nets in terms of Dice score, achieving 91% on LIDI-IRDC[15], 89% on 

LUNA16[16], and 89% on Kaggle[17]. Additionally, advanced experiments further validated the 

effectiveness of the EARPU-Net model. In the future, we will focus on designing a more lightweight 

structure based on parallel computing in the medical field for further research. 
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