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Abstract: In the present study, we have derived a well-known Usual-Tait equation of state using a simple fitting 

parameter method and primary boundary conditions of the equation of state. The accuracy of Usual-Tait EOS is 

very high compared to other equations of state taken in the study, and for better clarity, we compare with available 

experimental data. The most straightforward equation quickly transforms into an inverted equation of state 

without neglecting any term or approximation; therefore, the accuracy of calculated values of other properties 

becomes very high. Usual-Tait also deviates at high compression regions; behind this is a fundamental principle 

considered during derivation. An atom's binding energy contains attractive and repulsive terms, but all the 

equations of state are considered attractive terms. This study also suggests developing a new state equation that 

includes beautiful and vile terms, is simple, and contains minimum terms. 
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Introduction: 

The equation of state (EOS) is essential in various fields such as physics, material science, condensed 

matter physics, and planetary science. It provides a fundamental link between thermodynamic 

parameters like pressure, volume, and temperature. Accurate models are crucial for predicting 

compression behaviour, pressure, thermal expansion coefficient, Gruneisen parameter, and Debye 

temperature under extreme conditions in planetary interiors, condensed matter systems, and material 

science. There are several derived equations, with the Murnaghan EOS being the simplest one. 

However, its deviation from experimental results increases with higher compression [1-3]. The 

formulation of the pressure derivative of bulk modulus also remains constant concerning compression, 

but experimentally, the first-order pressure derivative of bulk modulus decreases with increasing 

compression [4].  

Recently, Srivastava et al. derived a new equation of state by considering higher-order compression 

terms, which modifies the Shanker EOS. They found that increasing the order of compression improves 

the accuracy of the equation of state but also makes the equation more complex. Birch-Murnaghan also 

derived third and fourth-order equations of state with increasing accuracy, but the equations became 

more complex. When such equations of state are converted into an inverted type, neglecting higher term 

deviation leads to compression value inaccuracies [5-6]. In recent years, there has been growing interest 

in developing EOS models that balance simplicity and precision. This paper introduces a novel equation 

of state characterised by a minimal number of terms yet delivering exceptional accuracy across a broad 

range of materials and conditions. The development of this EOS is inspired by the need for a model that 

reduces computational overhead and retains predictive power comparable to more elaborate 

formulations. Traditionally, these equations have become increasingly complex, incorporating 

numerous parameters to achieve higher accuracy. However, this complexity often limits their practical 

use, especially in computational applications where simplicity and efficiency are paramount [7-8]. 

We have been developing a new equation of state on the principle of fitting parameters and conditions 

of the equation of state that satisfied the Stacey criterion.  The proposed model is a streamlined approach 

that enhances the EOS’s applicability without compromising performance. It can easily be converted 

into an inverted type of equation of state without neglecting any term of the equation of state. This 

property enhanced its application in condensed matter physics [9-10]. 
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The derivation of the equation is grounded on a fundamental thermodynamical property of the equation 

of state [6], that is, at 𝑉 = 𝑉0, 𝑃 = 0, 𝐾𝑇 = 𝐾0, and 𝐾𝑇
′ = 𝐾0

′. This EOS is tested against experimental 

and computational data, showing excellent agreement with real-world measurement and simulation 

across various phases and pressure ranges. 

This paper presents the proposed equation's names as Usual-Tait equation with theoretical foundation, 

demonstrates its versatility in predicting material properties, and compares its performance with well-

established EOS models such as Murnaghan EOS, the Universal equation of state named Vinet EOS, 

Kholiya EOS, Murnaghan EOS, Birch-Murnaghan EOS, Usual-Tait EOS, Shanker EOS, Modified 

Lennard-Jones EOS (mL-J EOS), Brennan-Stacey EOS, Born-Mie EOS, and compared with 

experimental data [11-19]. 

Our findings suggest that this simple yet powerful equation of state holds promise for various scientific 

and engineering applications, from studying planetary interiors to designing advanced materials. I hope 

this equation of state provides valuable scientific insights into condensed matter physics and material 

science. 

Methodology: 

The compression-dependent pressure is given by  

dW
P

dV
= −                                                                                                                                                                (1) 

Now consider an empirical formula of pressure that is based on the fitting parameter in simple form: 
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Where 𝐴 and 𝐵 are fitting parameters. 

Taking partial differentiation of equation (1) concerning V then we get: 
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According to the definition of bulk modulus: 
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The pressure derivative of the bulk modulus is given by: 
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Applying the condition at 0V V= , then 0TK K=  and 
' '

0TK K= Then from equation (5) and (8) we get: 

02AB K=                                                                                                                                                                        (9) 

'

0 2B K= +   

And  
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Substituting the value of 𝐴 and 𝐵In equations (2), (5), and (8), we get the expressions for compression-

dependent pressure, bulk modulus, and the first pressure derivative of bulk modulus, represented by 

equations (11), (12), and (13). 
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The Vinet EOS, Kholiya EOS, Murnaghan EOS, Birch-Murnaghan EOS, Usual-Tait EOS, Shanker 

EOS, Modified Lennard-Jones EOS (mL-J EOS), Brennan-Stacey EOS, Born-Mie EOS are expressed 

as: 

(1) Vinet equation of state: 

The Vinet equation of state, also known as the Universal Equation of State, is a phenomenological 

model used to describe the pressure-volume relationship of solids, particularly under high pressure. It 

is instrumental in geophysics and material science for studying the behaviour of materials under extreme 

conditions. The Vinet equation is derived from the material's interatomic potential and compressibility 

assumptions. 

The Vinet equation of state is a powerful tool for modelling the pressure-volume relationship of 

materials under high pressure. Based on an interatomic potential, its universal form accurately fits 

experimental data, making it valuable in geophysics and material science. However, its empirical nature 

and reliance on accurate parameters are important considerations when applying it to specific materials 

and conditions [18]. 

( ) ( ) xxxKP −−= − 1exp13 2

0                                                                                                         (14) 
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  where,  
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(2) Kholiya equation of state: 

The Kholiya equation of state describes the relationship between pressure, volume, and temperature for 

various high-pressure materials. This equation is handy in predicting metals' melting temperatures and 

nanomaterials' compression behaviour. The Kholiya equation has been compared with other state 

equations, such as the Murnaghan and Usual-Tait equations. It has been shown to provide closer 

agreement with experimental data for certain materials, especially those where the bulk modulus 

decreases continuously with pressure. This makes it valuable in high-pressure physics and material 

science applications [19]. 
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(3) Murnaghan equation of state: 

The Murnaghan equation of state is a foundational model for understanding the compressibility of 

solids. It is instrumental in geophysics and material science. Its simplicity makes it a practical choice, 

although more complex models like the Vinet equation may offer improved accuracy for extreme 

conditions [18]. 
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(4) Birch-Murnaghan equation of state: 

The Birch-Murnaghan equation of state is a robust and widely accepted model for describing the 

compressibility of solids under high pressure. Its derivation from finite strain theory and inclusion of 

higher-order terms gives a more accurate representation of material behaviour, making it invaluable in 

geophysics and material science [19]. 
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Where ( )
1/3

0/x V V= . 

                                                                                                                                    

(5) Singh and Kao equation of state: 

The Singh and Kao equation of state is a valuable tool in studying high-pressure material behaviour. 

Incorporating the bulk modulus and its pressure derivative provides a means to accurately describe the 

compressibility of materials under extreme conditions. Its applicability to nanomaterials and metals 

makes it a versatile choice in material science and high-pressure physics research [19]. 
2
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(7) Shanker equation of state: 

The Shanker equation of state (EOS) is a model used to describe the behaviour of solids under high 

pressure, particularly nanomaterials. It is derived using the Grüneisen theory of thermal expansion and 

is particularly useful for high-pressure physics. The Shanker EOS incorporates principles from the 

Grüneisen theory, which relates to thermal properties and their changes under pressure. In some 
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contexts, the Shanker EOS is modified to include higher order terms, resulting in the Higher Order 

Shanker (HOS) EOS, which improves its accuracy for specific materials [19]. 
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(8) Modified Lennard-Jones equation of state: 

The Modified Lennard-Jones (LJ) equation of state extends the classic Lennard-Jones potential and is 

designed better to model the thermodynamic properties of fluids and solids. The original Lennard-Jones 

potential describes the interaction between a pair of neutral atoms or molecules using two parameters: 

a well depth indicating the strength of attraction and a finite distance, where the interparticle potential 

is zero [19]. 
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(9) Brennan-Stacey equation of state: 

The Brennan-Stacey equation of state is a model used in thermodynamics to describe the behaviour of 

fluids, particularly gases. It is named after its developers, R.E. Brennan and F.D. Stacey, who introduced 

it in 1962. This equation describes the properties of gases at high pressures and temperatures, where 

ideal gas behaviour breaks down. Unlike the perfect gas law, which assumes that gas particles have no 

volume and do not interact with each other, the Brennan-Stacey equation of state accounts for both 

molecular volume and intermolecular forces [19]. 
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(10) Born-Mie equation of state: 

The Born-Mie equation of state, sometimes referred to as the Born-Mayer equation, is a model used in 

thermodynamics to describe the properties of simple molecular fluids, particularly gases and liquids. 

It's named after Max Born and Maria Goeppert-Mayer, who developed it in the early 20th century. The 

Born-Mie equation of state describes the intermolecular potential energy between particles in a fluid. It 

considers both the repulsive and attractive forces between molecules [19]. 
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Result and Discussion: 

In the present study, we have derived the Usual-Tait equation of state by using fitting parameters and 

boundary conditions of the equation of state. The Murnaghan equation of state is a straightforward 

equation of state and contains a very minimum term. Second, the equation of state, which includes a 

very minimum term, is the Usual-Tait equation of state. By using equations (11), (14), (15), (16), (17), 

(18), (19), (20), (21), and (22) we calculate compression-dependent pressure by using Vinet EOS, 

Kholiya EOS, Murnaghan EOS, Birch-Murnaghan EOS, Usual-Tait EOS, Shanker EOS, Modified 

Lennard-Jones EOS (mL-J EOS), Brennan-Stacey EOS, Born-Mie EOS and calculated values are 

compared with available experimental data listed in table 1. It is clear from the table that the result 

obtained by Usual-Tait EOS is similar to the experimental data. 

This study suggests the requirement of a simple and minimal term-dependent equation of state that 

gives the exact calculation of compression-dependent pressure resembling the experimental values. 

Fitting parameters becomes a better tool for deriving the equation of state. 

The equation of state, which contains minimal terms, is better than the complex equation of state, and 

its conversion into an inverted type of equation of state is straightforward. Therefore, establishing 

a formula for other thermophysical properties becomes very easy. 

Conclusion: 

In conclusion, the Usual-Tait equation of state, derived using fitting parameters, proves to be a simple 

yet accurate tool for calculating compression-dependent pressure. Its minimal-term structure provides 

results that closely match experimental data, making it efficient for deriving other thermophysical 

properties and practical for various thermophysical applications. 

Table 1: Input values of 𝐵0 and 𝐵0
′ , utilised in the calculation based on experimental data [4,9, 

17]. 

Materials 𝐵0 (GPa) 𝐵0
′  

Mo 266 3.99 

K 3.177 3.98 

Xe 36.5 8.87 

NaF 46.5 5.28 

 

Table 2. Calculated values of pressure (𝑃) at different compression  (𝑉/𝑉0)    By using (A) Vinet EOS, 

(B) Kholiya EOS, (C) Murnaghan EOS, (D) Birch-Murnaghan EOS, (E) Usual-Tait EOS, (F) Shanker 

EOS, (G) Modified Lennard-Jones EOS (mL-J EOS), (H) Brennan-Stacey EOS, (I) Born-Mie EOS, 

and (J) experimental [4, 9, 18]. 

Element V/V0 (A) (B) (C) (D) (E) (F) (G) (H) (I) (J) 

Mo 

1.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.974 7.40 7.40 7.40 7.40 7.40 7.40 7.40 7.40 7.40 7.40 

0.966 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 

0.958 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 12.60 

0.943 17.70 17.70 17.70 17.70 17.70 17.70 17.70 17.70 17.70 17.70 

0.936 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.20 20.10 

0.918 27.10 27.00 27.20 27.10 27.00 27.00 27.10 27.00 27.10 27.00 
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0.892 38.40 38.20 38.70 38.30 38.20 38.20 38.40 38.20 38.40 38.20 

0.856 56.80 56.30 57.60 56.70 56.30 56.40 56.80 56.20 56.80 56.30 

0.821 77.90 76.80 79.70 77.70 76.90 77.10 77.90 76.70 77.90 76.90 

0.809 86.10 84.80 88.40 85.90 84.70 85.10 86.10 84.60 86.10 84.70 

0.795 96.80 95.00 99.80 96.50 95.00 95.40 96.80 94.80 96.80 95.00 

K 

1.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.881 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

0.807 1.00 1.00 1.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.755 1.60 1.50 1.60 1.60 1.50 1.50 1.60 1.50 1.60 1.50 

0.713 2.10 2.00 2.30 2.10 2.00 2.10 2.10 2.00 2.10 2.00 

Xe 

1.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.956 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 

0.926 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 

0.903 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 

0.884 0.80 0.70 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

0.868 1.00 0.90 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 

0.854 1.20 1.00 1.30 1.10 1.20 1.20 1.20 1.20 1.20 1.20 

0.842 1.40 1.20 1.50 1.30 1.40 1.40 1.40 1.40 1.40 1.40 

0.831 1.60 1.30 1.70 1.40 1.60 1.60 1.60 1.50 1.60 1.60 

NaF 

1.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.983 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 1.00 

0.962 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 

0.946 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

0.932 4.00 3.90 4.00 4.00 4.00 3.90 4.00 3.90 4.00 4.00 

0.868 9.60 9.40 9.80 9.60 9.60 9.50 9.60 9.50 9.60 9.40 

0.832 14.00 13.40 14.50 13.90 13.90 13.80 14.00 13.70 14.00 14.00 

0.804 18.30 17.20 19.10 18.10 18.00 17.80 18.20 17.70 18.30 18.00 

0.782 22.30 20.70 23.50 21.90 21.70 21.60 22.10 21.40 22.30 21.00 

0.778 23.10 21.40 24.30 22.70 22.40 22.30 22.80 22.10 23.10 22.40 
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