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ABSTRACT: This work investigates the dissipative, equilibrium, and stability properties of a three-
dimensional integer-order chaotic system. Designing a suitable controller allows for dislocated phase
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Numerical simulations are provided to demonstrate the effectiveness of the theoretical results.
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1. INTRODUCTION

In 1972, Edward Lorenz employed the term "Butterfly Effect" to introduce chaos theory to the
modern world [1-4]. Understanding this principle can help make a complicated system more predictable.
Thus, when dealing with a system, you ought to remain aware of all inputs and maintain control over
them. Chaotic systems are unstable because they aren't resistant to external disturbances but rather react
in substantial manners. In other words, they are partially guided by outside influences rather than
rejecting them.

Chaos is one of the most apparent characteristics of nonlinear dynamical systems, whose state
variables strongly rely on their starting conditions. This reliance results in diverging behavior in such
systems, highlighting the critical significance of careful research into chaotic processes because chaos
appears in an extensive variety of domains, including chemical reactions [5,6], dynamo theory [7,8],
power systems [9,10], robotics [11,12], economics [13,14], cryptosystems, secure communications [15-
18], and so on.

The studies of synchronization by designing suitable control for integer-order chaotic systems
have attracted increasing attention among researchers due to their potential applications. Most recently,
various techniques and methods have been implemented by researchers to achieve the control and
synchronization of integer-order chaotic systems [19-21]. Most recently, the problem of controlling and
synchronizing chaos for a new dynamical system has been studied, and sufficient conditions for the
synchronization of chaotic systems have been derived in [22]. Chaos synchronization has garnered
tremendous worldwide interest in communication systems, which have applications in the encryption and
decryption of information for secure communications. An adaptive scheme has been exhibited in [23] for
chaos synchronization that solves the problem of security in communications. The multi-scale
synchronization scheme of two fractional-order king cobra chaotic systems is described [24]. In [25], a
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new technique has been suggested for synchronizing two chaotic systems, and that technique has been
applied to digital cryptography for sending and receiving messages. The authors in [26], an adaptive
terminal sliding-mode control method is proposed for the synchronization of uncertain fractional-order
chaotic systems with disturbances.

In this study, we examine dislocated phase and anti-phase parallel synchronization for integer-
order chaotic systems. These systems have been synchronized by creating non-linear control functions.
Synchronizing chaotic dynamical systems with parallel systems is also an important challenge. From an
application point of view, a novel key system for soundtrack cryptographic encryption is offered based on
the proposed synchronized chaotic systems that are safer and more powerful than a synchronized key
system [27-30]. The encryption and decryption procedures are demonstrated using a numerical simulation,
and the security of the recommended soundtrack cryptosystem is examined.

The rest of this study is organized as follows: Problem statements and preliminaries like
dissipation and stability of equilibrium points are given in Section 2. The concept of a parallel system for
chaotic systems and its dislocated phase and anti-phase synchronization are described in Section 3. The
applications of synchronized chaotic systems are discussed, and furthermore, it has been demonstrated
that the numerical example works well with the suggested soundtrack cryptosystem in Section 4. Finally,
this study concludes Section 5.

2. SYSTEM DESCRIPTION AND ANALYSIS

In this section the dynamical behaviors of a chaotic system are examined, such as dissipativity
and stability of equilibriums.
Consider a three dimensional chaotic system [31] with six nonlinear terms as

2
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( )

. .

x z
y z y y xz
z x x y y
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= - + +

= - + -
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Where 3Îx y z R( , , ) are the state variables and  , are the parameters of the system (1).
The system (1) exhibits chaos when 8 = and 3 = . The different phase portrait of the chaotic

attractor corresponding to the system (1) is shown in Figure.1.

2.1. Dissipativity

A dissipative flow [32] has a property that trajectories are attracted to a bounded region of state
space by a strange attractor and its divergence is negative.

For the system (1),

2 0 Ñ = + + = - + <
x y zV z y
x y z
  

( ) (2)

So, the system is dissipative with an exponential contraction rate: 2 - += z ydV e
dt

( )

2.2. Equilibrium points and stability
The equilibrium points of the system (1) are calculated by setting 0= = =x y z   . Then the

equilibrium points are
( ) ( ) ( )1 2 30 8408964 0 0 0 8408964 0 0 0 8408964 0 0       = = - =E i E i E. , , , . , , , . , , and

( )4 0 8408964 0 0 = -E . , , .
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Figure.1. Phase portraits of the chaotic system (1)

Theorem 2.1. For 8 = and 3 = , all equilibria of the system (1) are unstable.
Proof.

The Jacobian matrix of the system (1) is defined as

� =
0 0 1

− �2 −�� − 2��� −�� − ��2 − 2��
4�3 − 0.2�2� −0.2�2� + 2� 0

For equilibrium 1 0 8408964 0 0( . , , )E i= , the system (1) is linearized and the Jacobian matrix is defined as

� �1 =
0 0 1
0 0 0

−2.3784� 0 0
.

To gain its Eigen values, we let 1 0| ( ) |I J E - = and their corresponding Eigen values are

1 21 0905 1 0905 1 0905 1 0905. . , . .i i = - = - + and 3 0 = .
For equilibrium ( )2 0 8408964 0 0 . , , ,E i= - the system (1) is linearized and the Jacobian matrix is
constructed as

� �2 =
0 0 1
0 0 0

2.3784� 0 0
and their corresponding Eigen values are 1 1 0905 1 0905. . i = + ,

2 1 0905 1 0905. . ,i = - - and 3 0. =

For equilibrium ( )3 0 8408964 0 0 . , , ,E = the system (1) is linearized and the Jacobian matrix is defined as

� �3 =
0 0 1
0 0 0

2.3784 0 0
and their corresponding Eigen values are 1 21 5422 1 5422. , . = = - and

3 0 = .
For equilibrium ( )4 0 8408964 0 0  ,. , ,E = - the system (1) is linearized and the Jacobian matrix is defined
as

� �4 =
0 0 1
0 0 0

−2.3784 0 0
and their corresponding Eigen values are 1 21 5422 1 5422. , .i i = = - and

3 0 = .
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Since the linearization matrices 1 2 3( ), ( ), ( )J E J E J E and 4( )J E have atleast one eigen values with positive
real parts, then the equilibrium points 1 2 3, ,E E E and 4E are unstable.

3. SYNCHRONIZATION OF THE PROPOSED CHAOTIC SYSTEM

In this section, we defined parallel systems of a chaotic dynamical system. These parallel systems

of the chaotic system also show chaotic behavior. In [33], for 2r = and 1
2

r = the corresponding parallel

systems of our chaotic system (1) are given by

Parallel System I:
1 1

2
1 1 1 1 1 1
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2
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= - + -
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Parallel System II:
2 2

2
2 2 2 2 2 2

4 2 2 2
2 2 2 2 2

1
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2 2 2
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x z
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





(4)

Different Phase portraits of the chaotic system (1) and its parallel systems (3) and (4) are depicted in
Figure.2.

3.1. Dislocated Phase Synchronization

Consider the proposed chaotic system (1) as the master system and its parallel system (3) with
controllers as the slave system.

1 1 1
2

1 1 1 1 1 1 2
4 2 2 2

1 1 1 1 1 3

2
2 0 2 2 0 5

( )
. .

x z u
y z y y x z u
z x x y y u

 
= +

= - + + +

= - + - +





(5)

where 1 2,u u and 3u are controllers to be designed.
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Figure.2. Phase portraits of the chaotic system (1) and its parallel systems (3) and (4)

Define the dislocated phase synchronization error as

1 1

2 1

3 1

e x z
e y x
e z y

= -
= -
= -

(6)

The derivative of the error system (6) is

1 1

2 1

3 1

e x z
e y x
e z y

= -
= -
= -

  
  
 

(7)

Substituting (1) and (5) in (7), one can obtained that
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2
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. .
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



(8)

Theorem 3.1. Consider the master system (1) and slave system (5). If the feedback gain controller
0 1 2 3, , ,ik i> = then the state trajectories of an error dynamical system (8) converge to 0 for the total

control laws

2
1 1 1 1

4 2 2 2 2
2 1 1 1 1 1 2 2

4 2 2 2
3 1 1 1 1 3 3

0 1 0 5 2
2 0 2 2 0 5

( )

. . ( )

. .

u z y y xz z k e
u x x y y z y y x z k e
u z x x y y k e

 

 

- + + - +

= - + - + + + +

= - + +

=

+ -

(9)

In other words, the dislocated phase synchronization between systems (1) and (5) is achieved for
the total control laws (9).
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Proof.
Substituting (9) in (8), we get

1 1 1

2 2 2

3 3 3

e k e
e k e
e k e

= -
= -
= -





(10)

Consider the Lyapunov candidate function as

( ) ( )2 2 2
1 2 3

1
2

( )V e t e e e= + + (11)

Then the time derivative of ( )( )V e t can be written as

( )

( )

1 1 2 2 3 3

2 2 2
1 1 2 2 3 3

2 2 2
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[ ]
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

(12)

where

3

1 2

1 0 0
0 0
0 0


k

P k
k

=

Then the error system (8) is asymptotically stable if the matrix 1P should be positive definite.
The necessary and sufficient conditions for a matrix 1P to be positive definite if the diagonal

elements of 1P must be all positive and the determinants of all the upper left-hand corners of 1P are
positive.

Hence 1P is positive definite, then ( ) 0( )V e t < is negative definite. Which implies the error
system (8) is asymptotically stable. Based on Lyapunov stability theory, 0 1 2 3lim ( ) , , ,it

e t i= = . Therefore

the systems (1) and (5) are synchronized successfully.

3.2. Numerical Simulation
If 1 215 5,k k= = and 3 3,k = then the synchronized error system (10) becomes

1 1

2 2

3 3

15
5
3

e e
e e
e e

= -
= -
= -





(13)

The time variation of the error system (13) using dislocated phase synchronization is depicted in
Figure.3. It shows that, systems (1) and (5) are completely synchronized after a time 1 5.t > .
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Figure.3. The dislocated phase synchronized error trajectories of parallel systems (1) and (5)

3.3. Dislocated Anti-Phase Synchronization

Consider the proposed chaotic system (1) as the master system and its parallel system (4) with
controllers as the slave system.
The controlled system is

2 2 1

2
2 2 2 2 2 2 2

4 2 2 2
2 2 2 2 2 3

1
2

1 0 1 1 0 5
2 2 2

( )
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= - + + +

= - + - +







(14)

where 1 2,v v and 3v are controllers to be designed.
The dislocated anti-phase synchronization error system is defined as

1 2

2 2

3 2

  
 
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E x z
E y x
E z y

= +
= +
= +

(15)

The derivative of error system (15) is
1 2

2 2

3 2

E x z
E y x
E z y

= +

= +

= +

  
  
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(16)

Substituting (1) and (14) in (16), one can get
4 2 2 2

1 2 2 2 2 3

2
2 2 1

4 2 2 2 2
3 2 2 2 2 2 2

1 0 1 1 0 5
2 2 2

10 1 0 5
2

. .

( )

. . ( )

E z x x y y v

E z y y xz z v

E x x y y z y y x z v

 

 

= + - + - +

= - + + + +

= - + - - + + +







(17)

Theorem 3.2. The dislocated anti-phase synchronization between systems (1) and (14) is achieved for
the following nonlinear control laws:
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2
1 2 1 1
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(18)

where 1 2,K K and 3K are positive feedback gains which will be evaluated in order to achieve
synchronization.
Proof:

Substituting (18) in (17), one can get
1 1 1

2 2 2

3 3 3

E K E
E K E
E K E

= -

= -

= -





(19)

Consider the Lyapunov candidate function as

( ) ( )2 2 2
1 2 3

1
2

( )V E t E E E= + + (20)

Then the time derivative of ( )( )V E t can be written as
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=

= -

   



(21)

where
1

2

3

2

0 0
0 0
0 0

P
K

K
K= is a positive definite matrix. It shows that ( ) 0( )V E t < for all 0.iK >

According to Lyapunov stability theory, 0 1 2 3lim ( ) , , , .it
E t i= = Hence the synchronization between

systems (1) and (14) is achieved.

3.4. Numerical Simulation
If 1 225 10 ,K = = and 3 6,K = then the synchronized error (10) becomes

1 1

2 2

3 3

25
10
6

E E
E E
E E

= -

= -

= -





(22)

The time variation of the error system (22) is depicted in Figure.4. It shows that, the dislocated anti-phase
synchronization errors between the systems (1) and (14) are stable after a time 3.t >
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Figure.4. The dislocated phase synchronized error trajectories of parallel systems (1) and (14)

4. APPLICATION OF THE PROPOSED CHAOTIC SYSTEM

Encryption is a way to secure and verify data that are traded through public communication
channels in the presence of intruder party called antagonists. Consequently, the transmitted or stored
message can be converted to unreadable form except for intended receivers. The decryption techniques
allows intended receiver to reveal the contents of previously encrypted message via secrete keys
exchanged exclusively between transmitter and receiver.

The encryption and decryption techniques can be applied equally to a message in any form such
as text, image, audio or video.

In this section, soundtrack encryption - decryption algorithm is constructed based on
synchronized chaotic systems are applied to real-time sound track encryption and decryption using the
following proposed algorithm:

Encryption algorithm:

1. Let TS be an original soundtrack.
2. Consider the master system (1) and the slave system (3) as Sender's ( )S and Receiver's

( )R systems.
3. S and R agree on N and 0 ,t t³ where 0 2.t =
4. S computes the solutions ( ), ( )x t y t and ( )z t from the system (1) at time t and generate his/her

own secret key kS is as follows: 410( ) ( ) ( )k x t y t z t mod Nú= + + ´êS

5. R computes the solutions 1 1( ), ( )x t y t and 1( )z t from the system (3) at time t and generate his/her

own secret key kR is as follows: 4
1 1 1 10( ) ( ) ( )k x t y t z t mod Nú= + + ´êR

6. S wants to share a soundtrack TS toR . Then S computes E * ( )T kS mod N= S and send it to
.R

Decryption algorithm:

7. R receives an encrypted soundtrack E and receives original soundtrack 1E ( )k mod N-= -D R
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1

14 4
1 1 1

1 1 1 0

10 10

* [ * ( )]

* ( ) ( ) ( ) * ( ) ( ) ( ) ( )

( ( ) ( ), ( ) ( ) and ( ) ( ) after sometime )

T k k

T

T

S mod N

S x t y t z t x t y t z t mod N

S x t z t y t x t z t y t t t

-

-

=

= + + ´ + + ´

= = = = ³

D S R

D

4.1 Numerical Simulation

Consider the given soundtrack wave file TS . Assume that S and R agree on 250N = and 12t =
(Synchronization error between the system (1) and (5) are tends to zero after a time 0 2t = ). The sender
computed the solutions 0 4936 2 463( ) . , ( ) .x t y t= - = and 0 0075( ) .z t = - at t and generate his/her own
secrete key 69 250( ).k modºS R computes the solutions 1 0 4936 2 463( ) . , ( ) .y tx t = - = and

1 0 0075( ) .z t = - at 12t = and generate his/her own secrete key 69 250( ).k modºR S wants to share
soundtrack TS and it is depicted in Figure.5.
For encryption, S computes the encrypted sound track E * ( )T kS mod N= S and send it to .R
R receives an encrypted soundtrack E which is depicted in Figure. 6.
For decryption, R recovers an original soundtrack by computing

( )
1

169 69

E ( ) ( )

( ) ( )
k

T

T

mod N

S mod N

S

-

-

= *

= * *

=

D R

D

The decrypted soundtrack is shown in Figure.7.

Remark

The decrypted soundtrack has no information loss in proposed algorithm. Since error between the
original and decrypted soundtrack is zero, which is shown in Figure.8.

Figure.5. Original soundtrack.
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Figure.6. Encrypted soundtrack.

Figure.7. Decrypted soundtrack.

Figure.8. Error between encrypted and decrypted soundtrack
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5. CONCLUSIONS

This work looked into the dissipative, equilibrium, and stability properties of a three-dimensional
integer-order chaotic system. A appropriate controller was developed to enable dislocated phase and anti-
phase synchronization of two parallel chaotic systems. A new technique for soundtrack encryption and
decryption was developed using the proposed dislocation synchronization mechanism. Numerical
simulations were provided to show how well the theoretical results worked.
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