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ABSTRACT: In this study, we have tried to investigate the geometric interpretation of Wu and Zee results. We 

shall show how the same geometrical feature gives rise to topological terms in the non-Abelian gauge field 

Lagrangian in dimensions 3+ 1 and 2+1. This specific geometrical feature allows for the Berry phase in quantum 

physics, which is an elongated version of the Bohm-Ahranov phase. When quantization corresponds to freezing 

the particles at their initial Landau level, this geometrical approach to the phase space quantization may be 

understood in terms of a global magnetic field acting on a free particle in a higher dimension configuration space.  

This method subsequently reveals the crucial function of the gauge field, which results in the Klauder and 

stochastic quantization equivalencies. This article presents a geometrical formalism of non-Abelian gauge theory 

with a term, specifically focusing on the importance of Abelian gauge structures in non-Atrlian theories. The proof 

demonstrates that when fermionic currents are expressed in chiral forms. 

 

KEYWORDS: Vortex Dynamics, Non-Abelian Gauge Field, Topological Terms, Berry Phase, Geometric 

Quantization 

 

1. INTRODUCTION 

 

Wu and Zee [1] have shown in a recent study that the configuration space of non-Abelian gauge theories contains 

certain nontrivial Abelian background gauge fields when topological Lagrangian is included. In particular the 

-term and the topological mass term leads, respectively, to a vortex and a monopole in gauge orbit space in 3+1 

and 2+ 1 dimensions. In view of this the  -vacuum may be considered to arise from a kind of Bohm-Ahranov 

effect. The nature of the Abelian gauge field in a 3+1 dimension is found to be the field of a vortex line and in a 

2+1 dimension it is the field of a monopole. This specific geometrical feature is responsible for the realization of 

the Berry phase which is a generalized version of the Bohm-Ahranov phase in quantum mechanics. Different 

quantization procedures suggest that to have quantum probability from a classical system we have to introduce 

classical probability in a geometrical setup. Nelson's stochastic quantization method was expanded upon in a 

recent research [2] to include a relativistic framework and quantization of a Fermi field that accounts for Brownian 

motion processes in the interior space in addition to the exterior space. Anisotropy must be introduced into the 

interior space for a Fermi field to be quantized, allowing the internal variable to be seen as a direction vector 

connected to the outward space-time point. The geometrical and topological characteristics that emerge in an (3+ 

1) - dimensional space-time when a direction vector or vortex line is connected to a space-time point will be 

reviewed in Sec. along with how they affect a (2+ 1)-dimensional system. 
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2. THEORETICAL BACKGROUND 

 

Particle and antiparticle are represented by the direction vector's opposing orientations, respectively. To be 

equivalent to the Feynman path integral we have to take into account a complexified space-time when the coordi-

nate is given by   Z i   = +
 
 where  , corresponds to a direction vector attached to the space-time point 

 [3] . Since for quantization we have to introduce Brownian motion processes both in the external and internal 

space, after quantization, for an observational procedure we can think of the mean position of the particle q in 

the external observable space with a stochastic extension determined by the internal stochastic variable   . In 

the sharp point limit, the nonrelativistic quantum mechanics are achieved [4]..  It has been shown that when we 

consider the internal space anisotropic in nature so that     , appears as a direction vector, we can generate two 

internal helicities in terms of two spinorial variables giving rise to fcrmion and antifermion   [3]. This helps us to 

have a gauge theoretic extension of a relativistic quantum particle when the gauge group is given by (2, )SL C . 

It appears that the primary component of the quantization process is this innate gauge structure. Recently Klauder 

[5]   has formulated a quantization procedure that has the explicit property of coordinate independence. This is 

highly relevant as it clarifies how geometry functions in quantum probability. When quantization corresponds to 

freezing the particles at their initial Landau level, this geometrical approach to the phase space quantization may 

be understood in terms of a global magnetic field acting on a free particle in a higher dimension configuration 

space.In this approach, the critical role of the gauge field then emerges and leads to the equivalence of Klauder 

and stochastic quantization. The physical interpretation of the Hermitian line bundle, which was first presented 

in [6], may be found in the interaction between the magnetic field and the intrinsic gauge field in the formulation 

of stochastic phase space or in Klauder quantization, so the geometric quantization follows naturally from these 

two formalisms. 

 

 

 

             The location and momentum variables of a quantum particle can be expressed as follows, according to 

this interpretation of the stochastic quantization process 

ˆQ q iQ  = +  ;   ˆP p iP  = +                                      (1) 

 

 

where ( )q p   denotes the mean position (momentum) in the external observable space and ( )Q p   is given 

by the internal variable denoting the stochastic extension. Formulating the commutation relations is aided by the 

observation of Heisenberg's uncertainty relation from stochastic mechanics and the standard time energy 

uncertainty relation 

[ , ]Q P i g  = ,   [ , ] 0 [ , ]Q Q P P   = =                 (2) 

This suggests 

      ˆ ˆ[ , ]Q P i g  = ,    ˆ ˆ ˆ ˆ[ , ] 0 [ , ]Q Q P P   = =                (3) 
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The components of the internal variables in this case will not commute, so the relations (2) and (3) will not be 

satisfied. On the other hand, as we have pointed out, the quantization of a Fermi field is achieved when we 

introduce an anisotropic feature in the internal space so that we can have two opposite internal helicities 

corresponding to fermion and antifermion. Indeed. We will have 

 

[ , ] 0,[ , ] 0Q Q P P            

ˆ ˆ ˆ ˆ[ , ] 0,[ , ] 0Q Q P P                                     (4) 

 

Introducing a new constant  / lmc =  , where m  is the mass of the particle, the quantum uncertainty relation 

can now be written in terms of the dimensionless variables, where we replace Q  by  /Q l and P  by /P mc  

 

[ , ]Q P i g  =   ; ˆ ˆ[ , ]Q P i g  =              (5) 

 As has been shown by Brooke and Prugovecki [7], these relativistic canonical commutation relations admit the 

following representation of  /Q    and /P   

/ ( )Q i
p

  






= − +


,  

/ ( )P i
q

  






= +


                               (6) 

Where   and   are complex-valued functions. Now, when we introduce an anisotropy in the internal space 

giving rise to the internal helicity to quantize a fermion.  and  , became matrix-valued functions due to the 

noncommutativity character of the components ( )Q P   .                     

 
              When we consider that the two opposite orientations of the direction vector   attached to the space-

time point   , in complexified Minkowski space-time having the coordinate 
2

  , give rise to two opposite 

intemal helicities corresponding to fermion and antifermion, we can formulate the internal helicity in terms of the 

two component spinorial variable  ( )   [8].  In fact for a massive spinor, we can choose the chiral coordinate 

in this space as   

                ( / 2)Z i   

  = +
          

 ( 1, 2) =           (7)  

where the coordinate in the complex manifold Z i   = +  with 
1

2

  

  = is identified. We can 

replace the chiral coordinate by the matrices  
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( / 2)AA AA AAZ x i 

 
  
= + ,

0 1 2 3

2 3 0 1

AA x x x ix
x

x ix x x

  − +
=  

− + 
 (8) 

and  

(2, )AA SL c

  

The twistor equation is now changed in light of these relations as                

   0a AA

a A AZ Z 

   


+ =                             (9) 

 where 
A A    is the spinorial variable corresponding to the four-momentum variable P

 the conjugate of x
 

and is given by the matrix representation  

AA A AP  
 
=                           (10) 

and  

( , )a A

AZ   = , ( , )a A

AZ  


=  

with  

[ ( / 2) ]A AA AA

Ai x i 

   
 

= +  

Equation (9) now involves the helicity operator  

 

AA

A As 

   


= −               (11) 

which we identify as the internal helicity of the particle and it corresponds to the fermion number. It may be noted 

that we have taken the matrix representation of        P
 the conjugate of x

 in the complex coordinate  

Z i   = +      as    
AA A AP  

 
= implying   

2 0P =    and so the particle will have mass due to the 

nonvanishing character of the quantity   
2

   . It is observed that the complex conjugate of the chiral coordinate 

will give rise to a massive particle with opposite internal helicity corresponding to antifermion. In the null plane 

we can write the chiral coordinates as follows [9] . 

( / 2)AA AA A AZ x i  
  
= +                                (12)  

where the coordinate  
 is replaced by 

1

2

AA A A  
 
= . The helicity operator in this instance is provided by 

A A

A As    


= − = −                     (13)  

 

where 
A

Ai 


=   ,  
A

Ai = − . The corresponding twistor equation describes a massless spinor field. The 

state with the helicity  
1

2
 is the vacuum state of the fermion operator  

1
0

2
s = +  =                                                        (14)  
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Parallel to this, the fermion operator's vacuum state is the state with internal helicity 
1

2
− . 

                 
1

0
2

s = +  =                                            (15)  

In the case of a massive spinor we can define a plane D−
 where for the coordinate Z i   = + , where   

belongs to the interior of the forward light cone 0  and represents the upper half plane. The lower half plane 

D+
 is given by the set of all coordinates Z with   in the interior of the backward light cone  0  . The 

map 
*Z Z→ sends the upper half plane to the lower half plane. The space M of null plane   

2( 0) =  is the 

Shilov boundary so that a function holomorphic in  D−
( D+

 )  is determined by its boundary values. Thus if we 

consider that any function  ( ) ( ) ( )z x i   = +  is holomorphic in the whole domain, the helicity 
1 1

( )
2 2

+ −   

in the null plane may be taken to be the limiting value of internal helicity in the upper (lower) half plane. The 

domain with the properties 0       and 0 and in the upper and lower half planes suggests that the domain 

is disconnected in the sense of Minkowski space-time. This indicates that an angular momentum operator in such 

a region will behave similarly to a charged particle travelling through a magnetic monopole's field. In fact the 

wave function  ( ) ( ) ( )z x i     = +  can be treated to describe a particle moving in the external space-time 

having the coordinate  x  with an attached direction vector   .  Thus  ( )z  should take into account the 

polar coordinates  , ,r    along with the angle     specifying the rotational orientation around the direction 

vector   .   The eigenvalue of the operator  i





  just corresponds to the internal  helicity  

1 1
( )

2 2
+ −  . The 

three "Euler angles" are simply represented by (4,1)SO , , ,   for an extended body represented 

by the De-Sitter group. The angular momentum in this space is given by  J r p r=  −  where      is the 

eigenvalue of  i





  and can take the value

1

2
  . This implies that a particle can travel with 

1

2
l =  in such 

a space. The fact that in such an anisotropic space the angular momentum can take the value 
1

2
     is found to be 

analogous to the result that a monopole charged particle composite repre-senting a dyon satisfying the condition     

1

2
e = have their angular momentum shifted by 

1

2
 unit and their statistics shift accordingly [10]. 

 

                       In the complexified space-time exhibiting the internal helicity states we can now write the metric 

as ( , , )g x   . It has been shown elsewhere [11]  that the metric structure gives rise to the SL(2,c) gauge 

theory of gravitation and generates the field strength tensor F , given in terms of gauge fields B  which are 

matrix valued having the SL(2,c) group structure and is given by  
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[ , ]F B B B B      =  − +                            (16) 

 

So from relations (6), we can identify     with  B  and can associate another gauge field C , with  , 

satisfying the relation (16). This suggests that for a relativistic quantum particle which is taken as a stochastically 

extended one, a particle's fermionic nature links matrix-valued non-Abelian gauge fields with the SL(2,c) 

group structure to functions defined on stochastic phase space. That is, we write  

( )
Q

i B
p








= − +


,  

( )
P

i C
q








= +


                                                    (17)  

The asymptotic zero curvature condition 0F =  implies that we can write the non-Abelian gauge field on the 

boundary as  

1B U U 

−=  ,          (2, )U SL c            (18) 

With this substitution, we note that the term F F 

  in the Lagrangian gives rise to the skyrme term 

2[ , ]Tr UU UU 

+ +  so that we can write the skynne Lagrangian  

 

 
2 2( , ) [ , ]L M B B Tr U U Tr UU UU

    

+ + +=   +    (19)  

where the first term can be derived from the term like   
2M B B

  where M is a suitable constant having the 

dimension of mass. Thus we find that the quantization of a Fermi field considering an anisotropy in the internal 

space leading to an internal helicity description corresponds to the realization of a nonlinear  -model where the 

skyrme term (
2[ , ]skyrmeL Tr UU UU 

+ +=   ) intro-duced for stabilization of the soliton automatically arises 

here as an effect of quantization. This research suggests that the fermion number has topological origin and that 

huge fermions arise as solitons. In fact, we may take the group manifold for the Hermitian representation as SU(2), 

which results in a mapping from the space three sphere 
3s  to the group space 

3 3[ (2) ]s sU s= . The associated 

winding number is provided by 

 

1 1

2

1
( )

24
q ds Tr U UU UU U

   


− − −=           (20)  

Evidently q can be taken to represent the fermion number. 

              It is to be noted that the simplest Lagrangian density which is invariant under SL(2,c) trans-formation in 

spinor affine space is given by  

1

4
L Tr F F

 = −                          (21) 
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Following Carmeli and Malin[12]  if we apply the usual procedure of variational calculus, we get the field 

equations  

 

   ( ) [ , ] 0F B F 

     −  =               (22)  

 

 

Taking the infinitesimal generators of the group SL(2,c) in the tangent space [12] as  

 

      
1

0 0

1 0
g

 
=  
  ,

2
1 0

0 1
g

 
=  

−  ,  

3
0 1

0 0
g

 
=  
 

            (23)  

 

We can write 

   .a aB l g b g  = =
     

  ,
 

.a aF f g f g  = =
        (24)

 

 

Thus to describe a matter field in this geometry the total Lagrangian will be modified by the introduction of this 

SL(2,c) invariant Lagrangian density. Thus, we write for the Lagrangian of a massless Dirac field 

  

 

          
1

4
L D Tr F F

    = − −                      (25)  

 

where D igB  =  − , being a suitable coupling strength. From this a conserved current is constructed [7]  

0xJ b f J J  

    = − +  = +                        (26) 

  

From (2) it follows that  

( ) 0F b f

      −  =          (27) 

 
 

This suggests that 

 J b f f  

   =  =                                 (28) 

However. in (1) if we split the Dirac massless spinor in chiral forms and identify the internal helicity with left 

(right) chirality corresponding to   ( )     we have the following conservation laws [13]  

 

11
[ ( ) ] 0
2

R Rig J     − + =  
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21
[ ( ) ] 0
2

L L R Rig ig J         − + + =  

21
[ ( ) ] 0
2

L Lig J     − + =                                     (29) 

These three equations represent a consistent set of equations if we choose 

                             
1 21

2
J J = −  , 

3 21

2
J J = +                (30) 

which evidently gurantees the vector current conservation. Then we can write 

2( ) 0R R J     + =  

2( ) 0L L J     − =                                       (31) 

5 2

5( ) 2J J        =  = −                 (32) 

Thus the chiral anomaly is expressed here in terms of the second (2, )SL C  component of the 

gauge field current
2J  . We note that chiral currents are modified by the introduction of 

2J  and the anomaly 

vanishes.  

 

It is observed that the charge associated with the gauge field portion has the following form 

                                     
2 3 2ijk

i jk

surface

q J d x d f = =         ( , , 1, 2,3)i j k =                     (33)                   

 

Visualizing 
2

jkf  to be magnetic field-like components for the vector potential  
2

ib  we see that q is actually 

associated with the magnetic strength. It may be added here that the association of chiral anomaly with the Berry 

phase suggests that this topological phase   
i

e 
 is given by the relation 2


 =  , where 2q = and is 

related to the fermion number [14]. 

 

                        Thus we find that the quantization of a Fermi field associates a background magnetic field 

corresponding to 
2

ijf and the charge corresponding to the gauge field effectively represents a magnetic charge.  

 

    The term    TrF F

    in the Lagrangian (25) can be actually expressed as a four diver-gence     

 

 
2

1 2
[ ( )]

16 3
Tr B F B B B 

    


 = −  −                      (34) 

 

We acknowledge that the Pontryagin density and the gauge field Lagrangian are connected 

2

1
*

16
P Tr F F  

 


= − =                              (35) 
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  where 
 is the Chem-Simons secondary characteristic class. The Pontryagin index  

4q Pd x=   is a 

topological invariant. 

 

      The introduction of the Chem-Simons term modifies the axial vector current as  
5 5J J i  = +   where 

5 0J  =  though  
5 0J   .  We find from Eq. (32) that the Chem-Simons term is effectively represented by 

the current constructed from the SL(2,c) gauge field [15-22]. Thus we have Chem-Simons term effectively in built 

in the system and is associated with the topological aspects of the fermion arising out of the quantization 

procedure. From this analysis, we find that the non-Abelian gauge field associates a fictitious magnetic field in 

3+1 dimension, and the introduction of the Pontryagin term 
2

( )
32

F F

 




  effectively takes care of the 

anisotropic feature of the space-time when a direction vector (vortex line) is attached to the space-time point.  

In a 2+ 1 dimension the Hopf invariant is defined as  

 

                    
ˆˆˆ3

ˆˆ ˆ

1

4
H d x A F

 
= −                               (36)  

 

Now if   denotes a four-dimensional index then 

1

2
A F F F 

     =     

connects the Hopi invariant to the chiral anomaly. So from the above analysis we note that the Pontryagin term is 

associated with the Hopf term in a (2+1)-dimensional system. Non-Abelian gauge theories in 2+1 dimension with 

the incorporation of the Chem-Simons term  

           
2

[ ( )]
2 3

Tr A F A A A

    


 −                          (37)  

represent the effect of a magnetic monopole field with the pole strength  [23] The fact that a three-dimensional 

manifold B can be considered as a boundary of the four-dimensional manifold ( )M M B =  implies that the 

topological operation viz., the Pontryagin term, resulting from quantization in four dimensions, has a three-

dimensional analog known as the Chem-Simons action. This relationship may be understood as follows 

 
4 3

2
( )

3M M
F F A dA A A A =  +                      (38) 

This implies that the same geometrical property which is responsible for the Pontryagin term in 3+ 1 dimension 

induces the Chem-Simons term in a 2+ 1 dimension [24].  

 

               Thus we find that both in 3+ 1 and 2+ 1 dimensions the origin of the Pontryagin term and the Chem-

Simons term, respectively, associates an inherent magnetic monopole like behavior which manifests its properties 

through the anisotropic feature of space-time when a direction vector (vortex line) is attached to a space-time 

point [25-26]. 
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3. CONCLUSION 

The intrinsic Abelian gauge field structure in a nonAbelian gauge field theory in and in dimensions was covered 

in this study together with its geometrical and topological aspects [27]. It has been noticed that in and in 

dimensions the same geometrical characteristic is responsible for the formation of topological terms in the non-

Abelian gauge field Lagrangian. 

4. DISCUSSION 

The Berry phase is realized because of this particular geometrical property. In the end, an anisotropic space's 

shape and the quantization of fermions within it produce a topological index that is comparable to the strength of 

a magnetic pole. According to this formalism, the fermion current, when divided into chiral form, aids in the 

formulation of electromagnetic interactions in disconnected form, indicating that the theory becomes 

asymptotically free in this scenario.                       
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